
8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 1/15

Empty Responses

The standard Delete method should return google.protobuf.Empty, unless it is performing a
"soft" delete, in which case the method should return the resource with its state updated to
indicate the deletion in progress.

For custom methods, they should have their own XxxResponse messages even if they are empty,
because it is very likely their functionality will grow over time and need to return additional data.

Representing Ranges

Fields that represent ranges should use half-open intervals with naming convention
[start_xxx, end_xxx), such as [start_key, end_key) or [start_time, end_time). Half-open
interval semantics is commonly used by C++ STL library and Java standard library. APIs should
avoid using other ways of representing ranges, such as (index, count), or [first, last].

Resource Labels

In a resource-oriented API, the resource schema is de�ned by the API. To let the client attach
small amount of simple metadata to the resources (for example, tagging a virtual machine
resource as a database server), APIs should use the resource labels design pattern described in
google.api.LabelDescriptor.

To do so, the API design should add a �eld map<string, string> labels to the resource
de�nition.

Common Design Pa�erns

ge Book {

ing name = 1;

<string, string> labels = 2;

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 2/15

Long Running Operations

If an API method typically takes a long time to complete, it can be designed to return a Long
Running Operation resource to the client, which the client can use to track the progress and
receive the result. The Operation
 (https://github.com/googleapis/googleapis/blob/master/google/longrunning/operations.proto) de�nes a
standard interface to work with long running operations. Individual APIs must not de�ne their
own interfaces for long running operations to avoid inconsistency.

The operation resource must be returned directly as the response message and any immediate
consequence of the operation should be re�ected in the API. For example, when creating a
resource, that resource should appear in LIST and GET methods though the resource should
indicate that it is not ready for use. When the operation is complete, the Operation.response
�eld should contain the message that would have been returned directly, if the method was not
long running.

An operation can provide information about its progress using the Operation.metadata �eld. An
API should de�ne a message for this metadata even if the initial implementation does not
populate the metadata �eld.

List Pagination

Listable collections should support pagination, even if results are typically small.

Rationale: If an API does not support pagination from the start, supporting it later is
troublesome because adding pagination breaks the API's behavior. Clients that are unaware
that the API now uses pagination could incorrectly assume that they received a complete result,
when in fact they only received the �rst page.

To support pagination (returning list results in pages) in a List method, the API shall:

de�ne a string �eld page_token in the List method's request message. The client uses
this �eld to request a speci�c page of the list results.

de�ne an int32 �eld page_size in the List method's request message. Clients use this
�eld to specify the maximum number of results to be returned by the server. The server
may further constrain the maximum number of results returned in a single page. If the
page_size is 0, the server will decide the number of results to be returned.

https://github.com/googleapis/googleapis/blob/master/google/longrunning/operations.proto

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 3/15

de�ne a string �eld next_page_token in the List method's response message. This �eld
represents the pagination token to retrieve the next page of results. If the value is "", it
means no further results for the request.

To retrieve the next page of results, client shall pass the value of response's next_page_token in
the subsequent List method call (in the request message's page_token �eld):

When clients pass in query parameters in addition to a page token, the service must fail the
request if the query parameters are not consistent with the page token.

Page token contents should be a url-safe base64 encoded protocol buffer. This allows the
contents to evolve without compatibility issues. If the page token contains potentially sensitive
information, that information should be encrypted. Services must prevent tampering with page
tokens from exposing unintended data through one of the following methods:

require query parameters to be respeci�ed on follow up requests.

only reference server-side session state in the page token.

encrypt and sign the query parameters in the page token and revalidate and reauthorize
these parameters on every call.

An implementation of pagination may also provide the total count of items in an int32 �eld
named total_size.

List Sub-Collections

istBooks(ListBooksRequest) returns (ListBooksResponse);

ge ListBooksRequest {

ing parent = 1;

32 page_size = 2;

ing page_token = 3;

ge ListBooksResponse {

eated Book books = 1;

ing next_page_token = 2;

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 4/15

Sometimes, an API needs to let a client List/Search across sub- collections. For example, the
Library API has a collection of shelves, and each shelf has a collection of books, and a client
wants to search for a book across all shelves. In such cases, it is recommended to use standard
List on the sub-collection and specify the wildcard collection id "-" for the parent collection(s).
For the Library API example, we can use the following REST API request:

the reason to choose "-" instead of "*" is to avoid the need for URL escaping.

Get Unique Resource From Sub-Collection

Sometimes, a resource within a sub-collection has an identi�er that is unique within its parent
collection(s). In this case, it may be useful to allow a Get to retrieve that resource without
knowing which parent collection contains it. In such cases, it is recommended to use a
standard Get on the resource and specify the wildcard collection id "-" for all parent collections
within which the resource is unique. For example, in the Library API, we can use the following
REST API request, if the book is unique among all books on all shelves:

The resource name in the response to this call must use the canonical name of the resource,
with actual parent collection identi�ers instead of "-" for each parent collection. For example,
the request above should return a resource with a name like
shelves/shelf713/books/book8141, not shelves/-/books/book8141.

So�ing Order

If an API method lets client specify sorting order for list results, the request message should
contain a �eld:

ttps://library.googleapis.com/v1/shelves/-/books?filter=xxx

ttps://library.googleapis.com/v1/shelves/-/books/{id}

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 5/15

The string value should follow SQL syntax: comma separated list of �elds. For example:
"foo,bar". The default sorting order is ascending. To specify descending order for a �eld, a
su�x " desc" should be appended to the �eld name. For example: "foo desc,bar".

Redundant space characters in the syntax are insigni�cant. "foo,bar desc" and
" foo , bar desc " are equivalent.

Request Validation

If an API method has side effects and there is a need to validate the request without causing
such side effects, the request message should contain a �eld:

If this �eld is set to true, the server must not execute any side effects and only perform
implementation-speci�c validation consistent with the full request.

If validation succeeds, google.rpc.Code.OK must be returned and any full request using the
same request message should not return google.rpc.Code.INVALID_ARGUMENT. Note that the
request may still fail due to other errors such as google.rpc.Code.ALREADY_EXISTS or because
of race conditions.

Request Duplication

For network APIs, idempotent API methods are highly preferred, because they can be safely
retried after network failures. However, some API methods cannot easily be idempotent, such as
creating a resource, and there is a need to avoid unnecessary duplication. For such use cases,
the request message should contain a unique ID, like a UUID, which the server will use to detect
duplication and make sure the request is only processed once.

g order_by = ...;

validate_only = ...;

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 6/15

If a duplicate request is detected, the server should return the response for the previously
successful request, because the client most likely did not receive the previous response.

Enum Default Value

Every enum de�nition must start with a 0 valued entry, which shall be used when an enum value
is not explicitly speci�ed. APIs must document how 0 values are handled.

If there is a common default behavior, then the enum value 0 should be used, and the API
should document the expected behavior.

If there is no common default behavior, then the enum value 0 should be named as
ENUM_TYPE_UNSPECIFIED and should be rejected with error INVALID_ARGUMENT when used.

An idiomatic name may be used for the 0 value. For example, google.rpc.Code.OK is the
idiomatic way of specifying the absence of an error code. In this case, OK is semantically
equivalent to UNSPECIFIED in the context of the enum type.

unique request ID for server to detect duplicated requests.

is field **should** be named as `request_id`.

g request_id = ...;

Isolation {

Not specified.

LATION_UNSPECIFIED = 0;

Reads from a snapshot. Collisions occur if all reads and writes cannot be

logically serialized with concurrent transactions.

IALIZABLE = 1;

Reads from a snapshot. Collisions occur if concurrent transactions write

to the same rows.

PSHOT = 2;

en unspecified, the server will use an isolation level of SNAPSHOT or

tter.

tion level = 1;

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 7/15

In cases where an intrinsically sensible and safe default exists, that value may be used for the
'0' value. For example, BASIC is the '0' value in the Resource View (#resource_view) enum.

Grammar Syntax

In API designs, it is often necessary to de�ne simple grammars for certain data formats, such
as acceptable text input. To provide a consistent developer experience across APIs and reduce
learning curve, API designers must use the following variant of Extended Backus-Naur Form
(EBNF) syntax to de�ne such grammars:

TOKEN represents terminal symbols de�ned outside the grammar.

Integer Types

In API designs, unsigned integer types such as uint32 and fixed32 should not be used because
some important programming languages and systems don't support them well, such as Java,
JavaScript and OpenAPI. And they are more likely to cause over�ow errors. Another issue is that
different APIs are very likely to use mismatched signed and unsigned types for the same thing.

When signed integer types are used for things where the negative values are not meaningful,
such as size or timeout, the value -1 (and only -1) may be used to indicate special meaning,
such as end of �le (EOF), in�nite timeout, unlimited quota limit, or unknown age. Such usages
must be clearly documented to avoid confusion. API producers should also document the
behavior of the implicit default value 0 if it is not very obvious.

ction = name "=" [Expression] ";" ;

ssion = Alternative { "|" Alternative } ;

native = Term { Term } ;

 = name | TOKEN | Group | Option | Repetition ;

 = "(" Expression ")" ;

n = "[" Expression "]" ;

ition = "{" Expression "}" ;

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 8/15

Pa�ial Response

Sometimes an API client only needs a speci�c subset of data in the response message. To
support such use cases, some API platforms provide native support for partial responses.
Google API Platform supports it through response �eld mask. For any REST API call, there is an
implicit system query parameter $fields, which is the JSON representation of a
google.protobuf.FieldMask value. The response message will be �ltered by the $fields before
being sent back to the client. This logic is handled automatically for all API methods by the API
Platform.

Resource View

To reduce network tra�c, it is sometimes useful to allow the client to limit which parts of the
resource the server should return in its responses, returning a view of the resource instead of the
full resource representation. The resource view support in an API is implemented by adding a
parameter to the method request which allows the client to specify which view of the resource it
wants to receive in the response.

The parameter:

should be of an enum type

must be named view

Each value of the enumeration de�nes which parts of the resource (which �elds) will be
returned in the server's response. Exactly what is returned for each view value is
implementation-de�ned and should be speci�ed in the API documentation.

ttps://library.googleapis.com/v1/shelves?$fields=name

ge google.example.library.v1;

ce Library {

 ListBooks(ListBooksRequest) returns (ListBooksResponse) {

ption (google.api.http) = {

 get: "/v1/{name=shelves/*}/books"

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 9/15

This construct will be mapped to URLs such as:

You can �nd out more about de�ning methods, requests, and responses in the Standard
Methods (/apis/design/standard_methods) chapter of this Design Guide.

ETags

An ETag is an opaque identi�er allowing a client to make conditional requests. To support
ETags, an API should include a string �eld etag in the resource de�nition, and its semantics
must match the common usage of ETag. Normally, etag contains the �ngerprint of the resource

BookView {

Not specified, equivalent to BASIC.

K_VIEW_UNSPECIFIED = 0;

Server responses only include author, title, ISBN and unique book ID.

The default value.

IC = 1;

Full representation of the book is returned in server responses,

including contents of the book.

L = 2;

ge ListBooksRequest {

ing name = 1;

Specifies which parts of the book resource should be returned

in the response.

kView view = 2;

ttps://library.googleapis.com/v1/shelves/shelf1/books?view=BASIC

https://cloud.google.com/apis/design/standard_methods

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 10/15

computed by the server. See Wikipedia (https://en.wikipedia.org/wiki/HTTP_ETag) and RFC 7232
 (https://tools.ietf.org/html/rfc7232#section-2.3) for more details.

ETags can be either strongly or weakly validated, where weakly validated ETags are pre�xed
with W/. In this context, strong validation means that two resources bearing the same ETag
have both byte-for-byte identical content and identical extra �elds (ie, Content-Type). This
means that strongly validated ETags permit for caching of partial responses to be assembled
later.

Conversely, resources bearing the same weakly validated ETag value means that the
representations are semantically equivalent, but not necessarily byte-for-byte identical, and
therefore not suitable for response caching of byte-range requests.

For example:

It's important to understand that the quotes really are part of the ETag value, and must be
present in order to conform with RFC 7232 (https://tools.ietf.org/html/rfc7232#section-2.3). This
means that JSON representations of ETags end up escaping the quotes. For example, the
ETags would be represented in JSON resource bodies as:

Summary of permitted characters in ETags:

Printable ASCII only

Non-ASCII characters permitted by RFC 2732, but are less developer-friendly

No spaces

No double quotes other than in the positions shown above

is is a strong ETag, including the quotes.

3e4d5b6c7c"

is is a weak ETag, including the prefix and quotes.

2b3c4d5ef"

rong

ag": "\"1a2f3e4d5b6c7c\"", "name": "...", ... }

ak

ag": "W/\"1a2b3c4d5ef\"", "name": "...", ... }

https://en.wikipedia.org/wiki/HTTP_ETag
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 11/15

Avoid backslashes as recommended by RFC 7232 to prevent confusion over escaping

Output Fields

APIs may want to distinguish between �elds that are provided by the client as inputs and �elds
that are only returned by the server on output on a particular resource. For �elds that are output
only, the �eld attribute shall be documented.

Note that if output only �elds are set in the request or included in a
google.protobuf.FieldMask, the server must accept the request without error. The server must
ignore the presence of output only �elds and any indication of it. The reason for this
recommendation is because clients often reuse resources returned by the server as another
request input, e.g. a retrieved Book will be later reused in an UPDATE method. If output only
�elds are validated against, then this places extra work on the client to clear out output only
�elds.

Singleton Resources

A singleton resource can be used when only a single instance of a resource exists within its
parent resource (or within the API, if it has no parent).

The standard Create and Delete methods must be omitted for singleton resources; the
singleton is implicitly created or deleted when its parent is created or deleted (and implicitly
exists if it has no parent). The resource must be accessed using the standard Get and Update
methods, as well as any custom methods that are appropriate for your use case.

For example, an API with User resources could expose per-user settings as a Settings
singleton.

ge Book {

ing name = 1;

Output only.

estamp create_time = 2;

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 12/15

Streaming Half-Close

For any bi-directional or client-streaming APIs, the server should rely on the client-initiated half-
close, as provided by the RPC system, to complete the client-side stream. There is no need to
de�ne an explicit completion message.

Any information that the client needs to send prior to the half-close must be de�ned as part of
the request message.

etSettings(GetSettingsRequest) returns (Settings) {

ion (google.api.http) = {

et: "/v1/{name=users/*/settings}"

pdateSettings(UpdateSettingsRequest) returns (Settings) {

ion (google.api.http) = {

atch: "/v1/{settings.name=users/*/settings}"

ody: "settings"

ge Settings {

ing name = 1;

Settings fields omitted.

ge GetSettingsRequest {

ing name = 1;

ge UpdateSettingsRequest {

tings settings = 1;

Field mask to support partial updates.

ldMask update_mask = 2;

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 13/15

Domain-scoped names

A domain-scoped name is an entity name that is pre�xed by a DNS domain name to prevent
name collisions. It is a useful design pattern when different organizations de�ne their entity
names in a decentralized manner. The syntax resembles a URI without a scheme.

Domain-scoped names are widely used among Google APIs and Kubernetes APIs, such as:

The Protobuf Any type representation: type.googleapis.com/google.protobuf.Duration

Stackdriver metric types: compute.googleapis.com/instance/cpu/utilization

Label keys: cloud.googleapis.com/location

Kubernetes API versions: networking.k8s.io/v1

The kind �eld in the x-kubernetes-group-version-kind OpenAPI extension.

Bool vs. Enum vs. String

When designing an API method, it is very common to provide a set of choices for a speci�c
feature, such as enabling tracing or disabling caching. The common way to achieve this is to
introduce a request �eld of bool, enum, or string type. It is not always obvious what is the right
type to use for a given use case. The recommended choice is as follows:

Using bool type if we want to have a �xed design and intentionally don't want to extend
the functionality. For example, bool enable_tracing or bool enable_pretty_print.

Using an enum type if we want to have a �exible design but don't expect the design will
change often. The rule of thumb is the enum de�nition will only change once a year or
less often. For example, enum TlsVersion or enum HttpVersion.

Using string type if we have an open ended design or the design can be changed
frequently by an external standard. The supported values must be clearly documented.
For example:

string region_code as de�ned by Unicode regions
 (http://www.unicode.org/reports/tr35/#unicode_region_subtag).

string language_code as de�ned by Unicode locales
 (http://www.unicode.org/reports/tr35/#Unicode_locale_identi�er).

http://www.unicode.org/reports/tr35/#unicode_region_subtag
http://www.unicode.org/reports/tr35/#Unicode_locale_identifier

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 14/15

Data Retention

When designing an API service, data retention is a critical aspect of service reliablity. It is
common that user data is mistakenly deleted by software bugs or human errors. Without data
retention and corresponding undelete functionality, a simple mistake can cause catastrophic
business impact.

In general, we recommend the following data retention policy for API services:

For user metadata, user settings, and other important information, there should be 30-day
data retention. For example, monitoring metrics, project metadata, and service de�nitions.

For large-volume user content, there should be 7-day data retention. For example, binary
blobs and database tables.

For transient state or expensive storage, there should be 1-day data retention if feasible.
For example, memcache instances and Redis servers.

During the data retention window, the data can be undeleted without data loss. If it is expensive
to offer data retention for free, a service can offer data retention as a paid option.

Large Payloads

Networked APIs often depend on multiple network layers for their data path. Most network
layers have hard limits on the request and response size. 32MB is a commonly used limit in
many systems.

When designing an API method that handles payloads larger than 10MB, we should carefully
choose the right strategy for usability and future growth. For Google APIs, we recommend to
use either streaming or media upload/download to handle large payloads. With streaming, the
server incrementally handles the large data synchronously, such as Cloud Spanner API. With
media, the large data �ows through a large storage system, such as Google Cloud Storage, and
the server can handle the data asynchronously, such as Google Drive API.

Previous

Naming Conventions (/apis/design/naming_convention)
Next

https://cloud.google.com/apis/design/naming_convention
https://cloud.google.com/apis/design/documentation

8/23/2020 Common Design Patterns | Cloud APIs | Google Cloud

https://cloud.google.com/apis/design/design_patterns/ 15/15

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-07-24 UTC.

Documentation (/apis/design/documentation)

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies
https://cloud.google.com/apis/design/documentation

