
8/23/2020 Writing and Responding to Pub/Sub Messages

https://cloud.google.com/appengine/docs/flexible/dotnet/writing-and-responding-to-pub-sub-messages/ 1/7

Python (/appengine/docs/�exible/python/writing-and-responding-to-pub-sub-messages) | Java
 (/appengine/docs/�exible/java/writing-and-responding-to-pub-sub-messages) | Node.js
 (/appengine/docs/�exible/nodejs/writing-and-responding-to-pub-sub-messages) | Go
 (/appengine/docs/�exible/go/writing-and-responding-to-pub-sub-messages) | Ruby
 (/appengine/docs/�exible/ruby/writing-and-responding-to-pub-sub-messages) | PHP
 (/appengine/docs/�exible/php/writing-and-responding-to-pub-sub-messages) | .NET
Pub/Sub  (/pubsub/docs) provides reliable, many-to-many, asynchronous messaging between
applications. Publisher applications can send messages to a topic, and other applications can
subscribe to that topic to receive the messages.

This document describes how to use the Cloud Client Library
 (https://googleapis.github.io/google-cloud-dotnet/docs/Google.Cloud.PubSub.V1/) to send and receive

Pub/Sub messages in a .NET app.

Prerequisites

Follow the instructions in "Hello, World!" for .NET on App Engine
 (/appengine/docs/�exible/dotnet/quickstart) to set up your environment and project, and to
understand how App Engine .NET apps are structured.

Write down and save your project ID, because you will need it to run the sample
application described in this document.

* To download credentials from the Google Cloud Console to create a service account and add
the service account key to your application, follow step 3 outlined on GitHub
 (https://github.com/GoogleCloudPlatform/dotnet-docs-
samples/blob/927526578de0644a09a1e6611c848bd4f78f7a65/README.md#build-and-run)

. * Enable the Google Cloud Pub/Sub API.

Enable the API (https://console.cloud.google.com/�ows/enableapi?apiid=pubsub)

Cloning the sample app

Copy the sample apps to your local machine, and navigate to the pubsub directory:

Writing and Responding to Pub/Sub Messages

https://cloud.google.com/appengine/docs/flexible/python/writing-and-responding-to-pub-sub-messages
https://cloud.google.com/appengine/docs/flexible/java/writing-and-responding-to-pub-sub-messages
https://cloud.google.com/appengine/docs/flexible/nodejs/writing-and-responding-to-pub-sub-messages
https://cloud.google.com/appengine/docs/flexible/go/writing-and-responding-to-pub-sub-messages
https://cloud.google.com/appengine/docs/flexible/ruby/writing-and-responding-to-pub-sub-messages
https://cloud.google.com/appengine/docs/flexible/php/writing-and-responding-to-pub-sub-messages
https://cloud.google.com/pubsub/docs
https://googleapis.github.io/google-cloud-dotnet/docs/Google.Cloud.PubSub.V1/
https://cloud.google.com/appengine/docs/flexible/dotnet/quickstart
https://github.com/GoogleCloudPlatform/dotnet-docs-samples/blob/927526578de0644a09a1e6611c848bd4f78f7a65/README.md#build-and-run
https://console.cloud.google.com/flows/enableapi?apiid=pubsub


8/23/2020 Writing and Responding to Pub/Sub Messages

https://cloud.google.com/appengine/docs/flexible/dotnet/writing-and-responding-to-pub-sub-messages/ 2/7

appengine/�exible/Pubsub/appsettings.json
 (https://github.com/GoogleCloudPlatform/dotnet-docs-
samples/blob/master/appengine/�exible/Pubsub/appsettings.json)

om/GoogleCloudPlatform/dotnet-docs-samples/blob/master/appengine/�exible/Pubsub/appsettings.json)

Creating a topic and subscription

Create a topic and subscription, which includes specifying the endpoint to which the Pub/Sub
server should send requests:

Se�ing environment variables

Edit the appsettings.json �le to set your project ID:

lone https://github.com/GoogleCloudPlatform/dotnet-docs-samples

tnet-docs-samples/appengine/flexible/pubsub

d pubsub topics create YOUR_TOPIC

d pubsub subscriptions create YOUR_SUBSCRIPTION `

-topic YOUR_TOPIC `

-push-endpoint `

ttps://YOUR_PROJECT_ID.REGION_ID (#pubsub-urls).r.appspot.com/pubsub/push?token=YOUR_SE
-ack-deadline 10

 {

  "Pubsub": {

    "ProjectId": "your-project-id",

    "VerificationToken": "your-secret-token",

    "TopicId": "your-topic",

    "SubscriptionId": "your-subscription"

  },

  

  "Logging": {

https://github.com/GoogleCloudPlatform/dotnet-docs-samples/blob/master/appengine/flexible/Pubsub/appsettings.json
https://github.com/GoogleCloudPlatform/dotnet-docs-samples/blob/master/appengine/flexible/Pubsub/appsettings.json


8/23/2020 Writing and Responding to Pub/Sub Messages

https://cloud.google.com/appengine/docs/flexible/dotnet/writing-and-responding-to-pub-sub-messages/ 3/7

appengine/�exible/Pubsub/Controllers/HomeController.cs
 (https://github.com/GoogleCloudPlatform/dotnet-docs-
samples/blob/master/appengine/�exible/Pubsub/Controllers/HomeController.cs)

oudPlatform/dotnet-docs-samples/blob/master/appengine/�exible/Pubsub/Controllers/HomeController.cs)

Code review

The sample app uses the Cloud Client Library
 (https://googleapis.github.io/google-cloud-dotnet/docs/Google.Cloud.PubSub.V1/).

    "IncludeScopes": false,

    "LogLevel": {

      "Default": "Debug",

      "System": "Information",

      "Microsoft": "Information"

    }

  }

}

[HttpGet]

[HttpPost]

public IActionResult Index(MessageForm messageForm)

{

    var model = new MessageList();

    if (!_options.HasGoodProjectId())

    {

        model.MissingProjectId = true;

        return View(model);

    }

    if (!string.IsNullOrEmpty(messageForm.Message))

    {

        // Publish the message.

        var pubsubMessage = new PubsubMessage()

        {

            Data = ByteString.CopyFromUtf8(messageForm.Message)

        };

        pubsubMessage.Attributes["token"] = _options.VerificationToken;

        _publisher.PublishAsync(pubsubMessage);

        model.PublishedMessage = messageForm.Message;

https://github.com/GoogleCloudPlatform/dotnet-docs-samples/blob/master/appengine/flexible/Pubsub/Controllers/HomeController.cs
https://github.com/GoogleCloudPlatform/dotnet-docs-samples/blob/master/appengine/flexible/Pubsub/Controllers/HomeController.cs
https://googleapis.github.io/google-cloud-dotnet/docs/Google.Cloud.PubSub.V1/


8/23/2020 Writing and Responding to Pub/Sub Messages

https://cloud.google.com/appengine/docs/flexible/dotnet/writing-and-responding-to-pub-sub-messages/ 4/7

Running the sample locally

When running locally, you can use the Cloud SDK to provide authentication to use Google Cloud
APIs. Assuming you set up your environment as described in Prerequisites (#prerequisites), you
have already run the gcloud init command, which provides this authentication.

To run the sample app locally:

1. Open dotnet-docs-samples\appengine\flexible\AppEngineFlex.sln with Visual
Studio.

2. In Solution Explorer, right-click Pubsub, and choose Debug > Start new instance.

Simulating push noti�cations

The application can send messages locally, but it is not able to receive push messages locally.
You can, however, simulate a push message by making an HTTP request to the local push
noti�cation endpoint. The sample includes the �le sample_message.json.

To send an HTTP POST request:

After the request completes, you can refresh localhost:5000 and see the message in the list of
received messages.

    }

    // Render the current list of messages.

    lock (s_lock) model.Messages = s_receivedMessages.ToArray();

    return View(model);

}

Visual StudioCommand line (#command-li…

ontent -Raw .\sample_message.json | Invoke-WebRequest -Uri

//localhost:5000/Push?token=your-secret-token -Method POST -ContentType

/json' -OutFile out.txt



8/23/2020 Writing and Responding to Pub/Sub Messages

https://cloud.google.com/appengine/docs/flexible/dotnet/writing-and-responding-to-pub-sub-messages/ 5/7

Running on App Engine

To deploy the demo app to App Engine by using the gcloud command-line tool, you run the
following command from the directory where your app.yaml �le is located:

To deploy the Hello World app:

1. Open dotnet-docs-samples\appengine\flexible\AppEngineFlex.sln with Visual
Studio.

2. In Solution Explorer, right-click Pubsub, and choose Publish to Google Cloud...

Visual StudioCommand line (#command-li…



8/23/2020 Writing and Responding to Pub/Sub Messages

https://cloud.google.com/appengine/docs/flexible/dotnet/writing-and-responding-to-pub-sub-messages/ 6/7

3. Click App Engine Flex.

4. Click Publish.

You can now access the application at https://PROJECT_ID.REGION_ID (#appengine-urls)

.r.appspot.com. You can use the form to submit messages, but there's no guarantee of which
instance of your application will receive the noti�cation. You can send multiple messages and
refresh the page to see the received message.



8/23/2020 Writing and Responding to Pub/Sub Messages

https://cloud.google.com/appengine/docs/flexible/dotnet/writing-and-responding-to-pub-sub-messages/ 7/7

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-06-30 UTC.

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

