
8/23/2020 Migrate for Anthos streamlines legacy Java app modernization | Google Cloud Blog

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization 1/7

CON TAIN ERS & K UB ERN ET ES

How Migrate for Anthos streamlines
legacy Java app modernization

Ady Degany
Sr. Product Manager, Google Cloud

Tom Nikl
Product Marketing, Google Cloud

June 2, 2020

Recently, we’ve been highlighting all the ways that Anthos, our hybrid and multi-cloud

application platform, can help you modernize your Java applications and development

and delivery processes. This week we’ll focus on how Migrate for Anthos, which takes

your existing VM-based applications and intelligently converts them to run in containers

on Google Kubernetes Engine (GKE), can also help you move your legacy Java

applications.

Latest stories

Products

Topics

About

RSS Feed

Find an article...

Blog Menu

https://www.facebook.com/sharer/sharer.php?caption=How%20Migrate%20for%20Anthos%20streamlines%20legacy%20Java%20app%20modernization&u=https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization/
https://twitter.com/intent/tweet?text=How%20Migrate%20for%20Anthos%20streamlines%20legacy%20Java%20app%20modernization%20@googlecloud&url=https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization/
https://www.linkedin.com/shareArticle?mini=true&url=https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization/&title=How%20Migrate%20for%20Anthos%20streamlines%20legacy%20Java%20app%20modernization
mailto:?subject=How%20Migrate%20for%20Anthos%20streamlines%20legacy%20Java%20app%20modernization&body=Check%20out%20this%20article%20on%20the%20Cloud%20Blog:%0A%0AHow%20Migrate%20for%20Anthos%20streamlines%20legacy%20Java%20app%20modernization%0A%0ALatest%20Migrate%20for%20Anthos%20streamlines%20modernization%20of%20legacy%20Java%20apps.%0A%0Ahttps://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization/
https://cloud.google.com/blog/topics/anthos/java-app-modernization-with-anthos
https://cloud.google.com/blog/topics/anthos/how-anthos-helps-modernize-application-development
https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-1-3-accelerates-modernization
https://cloud.google.com/blog/
https://cloud.google.com/blog/products
https://cloud.google.com/blog/topics
https://cloud.google.com/blog/about
https://cloudblog.withgoogle.com/rss/
https://cloud.google.com/blog/
https://cloud.google.com/

8/23/2020 Migrate for Anthos streamlines legacy Java app modernization | Google Cloud Blog

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization 2/7

Whether it’s to enable new functionality, decommission an on-premises data center, or to

save on maintenance costs, many organizations are actively trying to modernize legacy

Java applications—preferably by running them in containers on GKE and Anthos.

Unfortunately, the way that some legacy applications acquire resource configuration

and usage information is incompatible with standard-issue Kubernetes, and requires

some complicated workarounds.

To help with this, the most recent release of Migrate for Anthos has a new feature to

help streamline and simplify legacy application migration, automatically augmenting

container resource visibility for legacy Linux-based applications, such as those that use

Oracle Java SE 7 and 8 (prior to update 191). This is crucial if you want to successfully

convert your legacy Java applications into containers without having to upgrade or

refactor them.

Migrate for Anthos helps you successfully move Java applications into containers by

transparently and automatically implementing a userspace filesystem that addresses

the limitations of the Linux filesystem. As you probably know, Linux uses cgroups to

enforce container resource allocations. However, a known issue when running in

Kubernetes, is that the Kubernetes node’s procfs /proc file system is mounted by default

in the container, and reflects host resources rather than those allocated to the container

itself. And because some legacy applications still acquire resource configuration and

usage information from files like meminfo and cpuinfo in the /proc directory, rather than

from cgroups files, running those applications in a container can result in errors and

instability. For example, older Java versions may use the information from meminfo and

cpuinfo to determine how much memory to allocate to its JVM heap, how many threads

to run in parallel for garbage collection (GC), etc. Running an older Java application in a

container that hasn’t been properly configured can result in processes being killed due to

out-of-memory errors, which can be difficult to triage and troubleshoot.

For legacy applications for which you cannot upgrade Java versions, Migrate for Anthos

takes a common approach used in the community: it implements the LXCFS filesystem.

It does this without requiring user intervention, special configuration or application

rebuild. Our goal is to help you migrate all your applications—not just the easy ones—

quickly and effectively, so you can make progress on your modernization goals.

RELAT ED ART ICLE

Anthos in depth: Transforming your legacy Java applications

READ ARTICLE

Latest stories

Products

Topics

About

RSS Feed

Find an article...

Blog Menu

https://cloud.google.com/blog/topics/anthos/java-app-modernization-with-anthos
https://www.youtube.com/watch?v=oOxn8J-nwEg&feature=youtu.be
http://cloud.google.com/migrate/anthos
https://en.wikipedia.org/wiki/Cgroups
https://linuxcontainers.org/lxcfs/
https://cloud.google.com/blog/topics/anthos/java-app-modernization-with-anthos
https://cloud.google.com/blog/
https://cloud.google.com/blog/products
https://cloud.google.com/blog/topics
https://cloud.google.com/blog/about
https://cloudblog.withgoogle.com/rss/
https://cloud.google.com/blog/
https://cloud.google.com/

8/23/2020 Migrate for Anthos streamlines legacy Java app modernization | Google Cloud Blog

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization 3/7

The sample legacy Java web application

Let’s take a look at the difference in behaviors of a legacy Java application migrated

with and without Migrate for Anthos.

For this test, we’re using a JBOSS 8.2.1 server using an older version of Oracle Java SE 7

update 80. You can download this version from Oracle’s Java SE 7 Archives. We package

it in two ways: as a regular Docker container image, and as a server VM from which we

have migrated the application to a container using Migrate for Anthos.

For the application, we use a sample JBoss node-info application with some additional

lines of code to simulate memory pressure for each request served. The following

modifications were applied:

src/main/java/pl/goldmann/work/helloworld/NodeInfoServlet.java

Testing the application on GKE

When deploying the two application containers, we apply the following resource

restrictions in the GKE Pod spec, allocating 1 vCPU and 1 GiB of RAM, on a GKE node

that has 4 vCPU and 16 GiB of RAM:

...

 resources:

 requests:

 memory: "1Gi"

 cpu: "1000m"

 limits:

 memory: "1Gi"

 cpu: "1000m"

...

int MiB = 1024*1024;

PrintWriter writer = resp.getWriter();

writer.println("Hostname: " + System.getProperty("jboss.host.name"));

writer.println("OS: " + System.getProperty("os.name") + " " + System.getProp

writer.println("Java Runtime: " + System.getProperty("java.runtime.name") +

writer.println("Java sees: ");

writer.println(" Number of processors: " + Runtime.getRuntime().avail

writer.println(" Max Memory: " + Runtime.getRuntime().maxMemory()/MiB

writer.println("--> grabbing 20 MiB of memory...");

try {

 byte b[] = new byte[20*MiB];

 writer.println("SUCCESS");

} catch (OutOfMemoryError error) {

 writer.println("FAILED: heap full!");

 resp.setStatus(202);

}

...

 01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

01
02
03
04
05
06
07
08

Latest stories

Products

Topics

About

RSS Feed

Find an article...

Blog Menu

https://www.oracle.com/java/technologies/javase/javase7-archive-downloads.html
https://github.com/goldmann/node-info
https://cloud.google.com/blog/
https://cloud.google.com/blog/products
https://cloud.google.com/blog/topics
https://cloud.google.com/blog/about
https://cloudblog.withgoogle.com/rss/
https://cloud.google.com/blog/
https://cloud.google.com/

8/23/2020 Migrate for Anthos streamlines legacy Java app modernization | Google Cloud Blog

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization 4/7

...

We then run the two application instances. First let’s check basic application output by

directing a web browser to the application URL.

Here’s what happens on the standard container:

But here’s what happens on the Migrate for Anthos migrated container:

You can immediately see a difference between the results. In the standard container, as

already reported in many such tests, Java reports resource values from the host node,

and not from the container resource allocations. In the standard container, the reported

maximum heap size is derived from Java 7's sizing algorithm, which, by default, is one

quarter of the host’s physical memory. However, in this case of the Migrate for Anthos

migrated container, the values are reported correctly.

You can see a similar impact when querying the Java Garbage Collection (GC) threading

plan. Connect to shell, and run:

java -XX:+PrintFlagsFinal -version | grep ParallelGCThreads

On the standard container, you get:

 uintx ParallelGCThreads = 4

 {product}

But on the migrated workload container, you get:

09

Latest stories

Products

Topics

About

RSS Feed

Find an article...

Blog Menu

https://dev.to/zac_siegel/java-and-docker---memory-and-cpu-limits-3h77
https://docs.oracle.com/javase/7/docs/technotes/guides/vm/gc-ergonomics.html
https://cloud.google.com/blog/
https://cloud.google.com/blog/products
https://cloud.google.com/blog/topics
https://cloud.google.com/blog/about
https://cloudblog.withgoogle.com/rss/
https://cloud.google.com/blog/
https://cloud.google.com/

8/23/2020 Migrate for Anthos streamlines legacy Java app modernization | Google Cloud Blog

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization 5/7

 uintx ParallelGCThreads = 0

 {product}

So here as well, you see the correct concurrency from the Migrate for Anthos container,

but not in the standard container.

Now let’s see the impact of these differences under load. We generate application load

using Hey. For example, the following command generates application load for two

minutes, with a request concurrency of 50:

 ./hey_linux_amd64 -z 2m http://##.###.###.###:8080/node-info/

Here are the test results with the standard container:

Status code distribution:

 [200] 332 responses

 [404] 8343 responses

Error distribution:

 [29] Get http://##.###.###.###:8080/node-info/: EOF

 [10116] Get http://##.###.###.###:8080/node-info/: dial

tcp ##.###.###.###:8080: connect: connection refused

 [91] Get http://##.###.###.###:8080/node-info/: net/http:

request canceled while waiting for connection (Client.Timeout

exceeded while awaiting headers

This is a clear indication that the service is not handling the load correctly, and indeed

when inspecting the container logs, we see multiple occurrences of

*** JBossAS process (79) received KILL signal ***

This is due to an out-of-memory (OOM) error. The Kubernetes deployment took care of

automatically restarting the OOM-killed container, during which time the service was

unavailable. The reason for this is a miscalculated Java heap size from considering the

host resources, instead of the container resource constraints. When not calculated right,

Java tries to allocate more memory than available and therefore gets killed, disrupting

the app.

In contrast, executing the same load test on the container migrated with Migrate for

Anthos results in:

Status code distribution:

 [200] 1676 responses

 [202] 76 responses

This indicates the application handled the load successfully even when memory

pressure was high.

Latest stories

Products

Topics

About

RSS Feed

Find an article...

Blog Menu

https://github.com/rakyll/hey
https://cloud.google.com/blog/
https://cloud.google.com/blog/products
https://cloud.google.com/blog/topics
https://cloud.google.com/blog/about
https://cloudblog.withgoogle.com/rss/
https://cloud.google.com/blog/
https://cloud.google.com/

8/23/2020 Migrate for Anthos streamlines legacy Java app modernization | Google Cloud Blog

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization 6/7

Unlock the power of containers for your legacy apps

We showed how Migrate for Anthos automatically augments a known container

resource visibility issue in Kubernetes. This helps ensure that legacy applications that

run on older Java versions behave correctly after being migrated, without having to

manually tune or reconfigure them to fit dynamic constraints applied through the

Kubernetes Pod specs. We also demonstrated how the legacy application remains

stable and responsive under memory load, without experiencing errors or restarts.

With this feature, Migrate for Anthos can help you harness the benefits of

containerization and container orchestration with Kubernetes, to modernize your

operations and management of legacy applications. You’ll be able to leverage the power

of CI/CD with image-based management, non-disruptive rolling updates, and unified

policy and application performance management across cloud native and legacy

applications, without requiring access to source code or application rewrite.

For more information, see our original release blog that outlines support for day-two

operations and more or fill out this form for more info (please mention ‘Migrate for

Anthos’ in the comment box).

POSTED IN:
CONTAINERS & KUBERNETES—CLOUD MIGRATION—ANTHOS—

GOOGLE CLOUD PLATFORM

Follow Us

RELAT ED ART ICLES

New GKE Dataplane V2 increases

security and visibility for containers

Looking ahead as GKE, the original

managed Kubernetes, turns 5
Latest stories

Products

Topics

About

RSS Feed

Find an article...

Blog Menu

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-1-3-accelerates-modernization
https://cloud.google.com/contact/?form=anthos
https://cloud.google.com/blog/products/containers-kubernetes
https://cloud.google.com/blog/products/cloud-migration
https://cloud.google.com/blog/topics/anthos
https://cloud.google.com/blog/products/gcp
https://cloudblog.withgoogle.com/rss
https://www.facebook.com/googlecloud/
https://www.twitter.com/googlecloud
https://www.youtube.com/googlecloud
https://www.linkedin.com/showcase/google-cloud
https://cloud.google.com/blog/products/containers-kubernetes/bringing-ebpf-and-cilium-to-google-kubernetes-engine
https://cloud.google.com/blog/products/containers-kubernetes/5-ways-google-cloud-is-making-gke-the-best-place-to-run-kubernetes
https://cloud.google.com/blog/
https://cloud.google.com/blog/products
https://cloud.google.com/blog/topics
https://cloud.google.com/blog/about
https://cloudblog.withgoogle.com/rss/
https://cloud.google.com/blog/
https://cloud.google.com/

8/23/2020 Migrate for Anthos streamlines legacy Java app modernization | Google Cloud Blog

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization 7/7

Privacy Terms About Google Google Cloud Products

HelpLanguage

Blog Menu

https://www.google.com/policies/privacy
https://policies.google.com/terms
https://www.google.com/about/
https://cloud.google.com/products/
https://support.google.com/
https://www.google.com/
https://cloud.google.com/blog/
https://cloud.google.com/

