

DATABASES

Increase visibility into Cloud Spanner performance with transaction stats

Santhosh Yeduquri

Find an article...

Latest stories

Products

O

Topics

About

Menu 🗸

database. It helps to understand how transactions work in Spanner to best troubleshoot any contentions.

Transaction statistics

Transaction statistics bring you insight into how an application is using the database and are useful when investigating performance issues. For example, you can check whether there are any slow-running transactions that might be causing contention, or you can identify potential sources of high load, such as large volumes of updates to a particular column.

Spanner provides built-in tables that store statistics about transactions. You can retrieve statistics from these SPANNER_SYS.TXN_STATS* tables using SQL statements.

Aggregated transaction statistics

Spanner captures aggregated transaction statistics in the following system tables:

- SPANNER_SYS.TXN_STATS_TOTAL_MINUTE : Transactions during one-minute
 intervals
- SPANNER_SYS.TXN_STATS_TOTAL_10MINUTE : Transactions during 10-minute

Find an article...

Latest stories

Products

Topics

About

If Spanner is unable to store statistics for all transactions run during the interval in these tables, the system prioritizes transactions with the highest latency, commit attempts, and bytes written during the specified interval.

Find the root cause of a database contention in Spanner

Transaction statistics can be useful in debugging and identifying transactions that are causing contentions in the database. Next, you'll see how this feature can be used to debug, using an example database where write latencies are high because of database contentions.

Step 1: Identify the time period with high latencies

This can be found in the application that's using Cloud Spanner. For example, the issue started occurring around " 2020-05-17T17:20:00 ".

Step 2: See how aggregated transactions metrics changed over a period of time

Query the TXN_STATS_TOTAL_10MINUTE table around the start of the issue. The results of this query may give clues about how latency and other transaction statistics changed over that period of time.

For example, this query can get aggregated transaction statistics, inclusive from " 2020-05-17T16:40:00 " to " 2020-05-17T19:40:00 ". This brings back results,

Find an article...

Latest stories

Products

Topics

About

Menu 🗸

*++++	+	++	+
interval_end avg_total_late	ncy_seconds commit_at	tempt_count commi	t_abort_count
+++	+	+	+
2020-05-17 16:40:00-07:00 0.028394498742	159258	315691	5170
2020-05-17 16:50:00-07:00 0.025045555854	970147	302124	3828
2020-05-17 17:00:00-07:00 0.046048877656	441875	346087	11382
2020-05-17 17:10:00-07:00 0.086375063087	579362	379964	33826
2020-05-17 17:20:00-07:00 0.129109876548	13588	390343	52549
2020-05-17 17:30:00-07:00 0.131445692910	13578	456455	76392
2020-05-17 17:40:00-07:00 0.159806046255	5369	507774	121458
2020-05-17 17:50:00-07:00 0.164089405910	90757	516587	115875
2020-05-17 18:00:00-07:00 0.157839108037	3088	552711	122626
2020-05-17 18:10:00-07:00 0.174982016545	16557	569460	154205
2020-05-17 18:20:00-07:00 0.172656567688	13875	613571	160772
2020-05-17 18:30:00-07:00 0.158770773932	58404	601994	143044
2020-05-17 18:40:00-07:00 0.202472004350	4819	604211	170019
2020-05-17 18:50:00-07:00 0.161450499478	25879	601622	135601
2020-05-17 19:00:00-07:00 0.165328549507	45302	596804	129511
2020-05-17 19:10:00-07:00 0.141366345051	83712	560023	112247
2020-05-17 19:20:00-07:00 0.136678128088	09277	570864	100596
2020-05-17 19:30:00-07:00 0.089365603486	055017	539729	65316
2020-05-17 19:40:00-07:00 0.082036892942	460721	479151	40398
+++		++	+

In the results, you can see that aggregated latency and abort count is higher in the highlighted period of time. We can pick any 10-minute interval (for example, interval ending at " 2020-05-17T18:40:00 ") where aggregated latency and/or abort count are high. Then, in the next step, you can see which transactions are contributing to high latency and abort count.

Step 3: Identify the exact transactions that are causing high latency

Query the TXN_STATS_TOP_10MINUTE table for the interval you picked in the

Q Find an article...

Latest stories

Products

Topics

About

Menu 🗸

+ -						
ļ	interval_end	fprint	avg_total_latency_seconds	avg_commit_latency_seconds	commit_attempt_count	commit_abort_count
L.	2020-05-17 18:40:00-07:00	15185072816865185658	0.35079353650815986	0.013915420509874821	278802	142205
L	2020-05-17 18:40:00-07:00	15435530087434255496	0.16329290487718973	0.014157147146761417	1 129012	27177
Ľ	2020-05-17 18:40:00-07:00	14175643543447671202	0.14232704915717748	0.013371019624173641	1 5357	636
Ľ	2020-05-17 18:40:00-07:00	898069986622520747	0.01975703283333333	0.01582636684179306	6	0 1
Ĺ	2020-05-17 18:40:00-07:00	10510121182038036893	0.016828849428571428	0.012515991926193237	1 7	1 0 1
Ĺ	2020-05-17 18:40:00-07:00	9287748709638024175	0.015886873628718677	0.011834535747766495	4269	1 1
L	2020-05-17 18:40:00-07:00	7129109266372596045	0.014234268175533813	0.010198219679296017	182227	1 0 1
L	2020-05-17 18:40:00-07:00	15630228555662391800	0.011981482551724138	0.010687483474612236	1 58	1 0 1
L	2020-05-17 18:40:00-07:00	7907238229716746451	0.010764966415384618	0.0096819670870900154	1 65	
I	2020-05-17 18:40:00-07:00	10158167220149989178	0.009458042113781125	0.0046647493727505207	3454	1 0 1
L	2020-05-17 18:40:00-07:00	9353100217060788102	0.0093271397186206889	0.0044589117169380188	1 725	1 0 1
L	2020-05-17 18:40:00-07:00	9521689070912159706	0.0092516675243902446	0.004433728288859129	1 164	1 0 1
L	2020-05-17 18:40:00-07:00	11079878968512225881	0.0063821259538461537	0.0018290182342752814	65	1 0 1

The highlighted row in the preceding table is an example of a transaction experiencing high latency because of a high number of commit aborts.

Step 4: Check for similarities among high-latency transactions

```
We can fetch read_columns, write_constructive_columns and
write_delete_tables columns for transactions with high abort count (also note
the fprint value, which will be useful in the next step). This is to check whether high-
latency transactions are operating on the same set of columns.
```

Query

Find an article...

Latest stories

Products

 \mathbf{O}

Topics

About

Menu 🗸

You can see how the statistics associated with this transaction shape have changed over a period of time. Use the following query, where **SFPRINT** is the fingerprint of the high-latency transaction from the previous step.

Query

01	SELECT
02	interval_end
03	ROUND(avg_total_latency_seconds, 3) AS latency,
04	ROUND(avg_commit_latency_seconds, 3) AS commit_latency,
05	commit_attempt_count,
06	commit_abort_count,
07	commit_failed_precondition_count,
08	avg_bytes
09	FROM SPANNER_SYS.TXN_STATS_TOP_10MINUTE
10	WHERE
11	interval_end >= "2020-05-17T16:40:00"
12	AND interval_end <= "2020-05-17T19:40:00"
13	AND fprint = \$FPRINT
14	ORDER BY interval_end;

Output

+ interval_end	۱ ا ا	latency	+ 	commit_latency	+	commit_att empt_count	+-	commit_ab ort_count	+-	commit_failed_preco dition_count	n	+-	avg_b ytes	+ +
2020-05-17 16:40:00-07: 2020-05-17 16:50:00-07:		0.095 0.069		0.010 0.009	1	53230 61264	1	4752 3589	1		0		91 91	

Q Find an article...

Latest stories

Products

Topics

About

Menu 🗸

step is to look at the commit abort error messages received by the application to know the reason for aborts. By inspecting logs in the application, we see the application actually changed its workload during this time. That likely means that some other transaction shape showed up with high attempts_per_second, and that a different transaction (maybe a nightly cleanup job) was responsible for the additional lock conflicts.

Cloud Spanner transaction statistics provides greater observability and insight into your database behaviors. Use both transaction statistics and **query statistics** to tune and optimize your workloads on Spanner.

To get started with Spanner, create an instance in the Cloud Console or try it out with a **Spanner Qwiklab**.

POSTED IN: DATABASES—GOOGLE CLOUD PLATFORM

RELATED ARTICLES

Databases that transform businesses —What happened at Google Cloud 3 reasons to consider Cloud Spanner for your next project

>

Find an article...

Latest stories

<

Products

Topics

About

Menu 🗸