
8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 1/12

This page describes how to install Python packages and connect to your Cloud Composer
environment from a few common applications.

Dependencies are installed with the existing Python dependencies that are included in the base
environment.

If your environment requires a speci�c package, we recommend that you explicitly install the
package to avoid issues due to package changes across Cloud Composer image versions. Do
not rely on the pre-installed packages in the Cloud Composer version that is running in your
environment.

Python 3 environments (/composer/docs/concepts/python-version) install only Python 3 packages.

Options for managing dependencies

If your Python dependency has no external dependencies and does not con�ict with Cloud
Composer's dependencies, you can install Python dependencies from the Python Package
Index (/composer/docs/how-to/using/installing-python-dependencies#install-package). You can also
install a Python dependency from private package repository
 (/composer/docs/how-to/using/installing-python-dependencies#install-private).

For other requirements, here are a few options.

Option Use if ...

Local Python library (#install-local) Your Python dependency can't be found
the Python Package Index, and the library
does not have any external dependencies,
such as dist-packages.

Plugins (/composer/docs/concepts/plugins) feature You want to use plugin-speci�c
functionality, such as modifying the
Air�ow web interface.

Installing Python dependencies

https://cloud.google.com/composer/docs/concepts/python-version
https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies#install-package
https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies#install-private
https://cloud.google.com/composer/docs/concepts/plugins

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 2/12

Option Use if ...

PythonVirtualenvOperator
 (https://github.com/apache/incubator-
air�ow/blob/1.9.0/air�ow/operators/python_operator.py#L178)

Your Python dependency can be found on
the Python Package Index and has no
external dependencies. However, you don't
want your Python dependency to be
installed for all workers, or the dependency
con�icts with dependencies required for
Cloud Composer.

KubernetesPodOperator
 (/composer/docs/how-to/using/using-kubernetes-pod-operator)

You require external dependencies that
can't be installed from pip, such as dist-
packages, or are on an internal pip server.

This option requires more setup and
maintenance and should generally be
considered if the other options do not
work.

Before you begin

The following permission is required to install Python packages in the Cloud Composer
environment: composer.environments.update. For more information, see Cloud Composer
Access Control (/composer/docs/how-to/access-control).

If your environment is protected by a VPC Service Controls perimeter, before installing
PyPI dependencies you must grant additional user identities
 (/composer/docs/con�guring-vpc-sc) with access to services that the service perimeter
protects and enable support for a private PyPI repository.

Requirements must follow the format speci�ed in PEP-508
 (https://www.python.org/dev/peps/pep-0508/#grammar) where each requirement is speci�ed

in lowercase and consists of the package name with optional extras and version
speci�ers.

When you install custom Python dependencies by using the API, all Cloud Composer
processes run with newly-installed PyPI dependencies.

Custom PyPI dependencies might cause con�icts with dependencies that Air�ow requires,
causing instability.

https://github.com/apache/incubator-airflow/blob/1.9.0/airflow/operators/python_operator.py#L178
https://cloud.google.com/composer/docs/how-to/using/using-kubernetes-pod-operator
https://cloud.google.com/composer/docs/how-to/access-control
https://cloud.google.com/composer/docs/configuring-vpc-sc
https://www.python.org/dev/peps/pep-0508/#grammar

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 3/12

Before deploying to production, we recommend that you test your PyPI packages locally
in an Air�ow worker container
 (/composer/docs/how-to/using/testing-dags#checking_for_pypi_package_errors).

Pypi dependency updates generate Docker images in Container Registry (/container-registry). Do not modify o

the images.

Viewing installed Python packages

To see the installed Python packages in your environment:

1. Connect to the GKE cluster
 (/composer/docs/how-to/managing/deploy-webserver#connect-cluster) for your environment.

2. Connect to a pod. To access pods in the GKE cluster, use namespace-aware kubectl
commands. To view all namespaces, use kubectl get pods --all-namespaces.

3. Run pip freeze.

For example:

oud container clusters get-credentials projects/composer-test-1/zones/us-central1-f/

ing cluster endpoint and auth data.

onfig entry generated for us-central1-quickstart-f5da909c-gke.

composer-test-1)$ kubectl exec -itn composer-1-7-2-airflow-1-9-0-0a9f265b airflow-wo

mposer-test-1)$ pip freeze

py==0.7.1

=1.2.0

rypto==0.24.0

==0.8.0

==19.1.0

ep8==1.4.4

https://cloud.google.com/composer/docs/how-to/using/testing-dags#checking_for_pypi_package_errors
https://cloud.google.com/container-registry
https://cloud.google.com/composer/docs/how-to/managing/deploy-webserver#connect-cluster

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 4/12

Connecting to a private Cloud Composer environment (/composer/docs/concepts/private-ip#cluster) might re

onal setup, depending on whether the Cloud Composer-managed GKE cluster permits external access.

Installing a Python dependency from PyPi

Your Python dependency must not have external dependencies or con�ict with Cloud
Composer's dependencies to install Python dependencies from the Python Package Index
 (https://pypi.org).

To add, update, or delete the Python dependencies for your environment:

Specify the package name and version speci�ers as shown:

"pi-python-client", "==1.1.post1"

"go-api-python-client", "==1.0.0.dev187"

For a package without the version speci�er, use an empty string for the value, such as "glob2", "
".

To access an environment's Python dependencies, navigate to the PyPi dependencies page using the
following steps:

1. Open the Environments page in the Google Cloud Platform Console.

Open the Environments page (https://console.cloud.google.com/composer/environments)

2. Click the Name of the environment you want to install, update, or delete Python dependencies
for.

3. Select the PyPi dependencies tab.

4. Click the Edit button.

5. To add a new dependency:

a. Click the Add dependency button.

b. Enter the name and version of your library in the Name and Version �elds.

6. To update an existing dependency:

Consolegcloud (#gcloud)rest (#rest)

https://cloud.google.com/composer/docs/concepts/private-ip#cluster
https://pypi.org/
https://console.cloud.google.com/composer/environments

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 5/12

a. Select the Name and/or Version �eld of the library you want to update.

b. Enter a new value.

7. To delete a dependency:

a. Hover over the name of the dependency to delete.

b. Click the trash can icon that appears.

Installing a Python dependency from a private repository

You can install packages hosted in private package repositories available on the public internet.
The packages must be properly con�gured packages that the default pip
 (https://pip.pypa.io/en/stable/user_guide/#con�g-�le) tool can install.

Cloud Composer does not support pip customization or resolve package dependencies and con�icts outside o

tion mechanisms that the default pip tool provides.

To install from a private package repository with a public address:

1. Create a pip.conf (https://pip.pypa.io/en/stable/user_guide/#con�g-�le) �le and include the
following information in the �le if applicable:

Access credentials for the repository

Non-default pip installation options

Example:

2. Upload the pip.conf �le to your environment's Cloud Storage bucket
 (/composer/docs/concepts/cloud-storage) and place it in the folder /config/pip/, for
example: gs://us-central1-b1-6efannnn-bucket/con�g/pip/pip.conf

[global]

extra-index-url=https://my-example-private-repo.com/

https://pip.pypa.io/en/stable/user_guide/#config-file
https://pip.pypa.io/en/stable/user_guide/#config-file
https://cloud.google.com/composer/docs/concepts/cloud-storage

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 6/12

Installing a Python dependency to a private IP environment

A private IP environment restricts access to the public internet, so installing Python
dependencies may require additional steps.

When installing dependencies from a public PyPI repository, no special con�guration is
required. You can follow the normal process described above (#install-package). You can also
request packages from a private repository with a public address (#install-private).

Alternatively, you can host a private PyPI repository in your VPC network. When installing
dependencies, Cloud Composer will run the operation within the private IP GKE cluster hosting
your environment, without accessing any public IP address through Cloud Build.

To install packages from a private repository hosted in your VPC network:

1. If the service account for your Cloud Composer environment does not have the
project.editor role, grant it the iam.serviceAccountUser role.

2. Specify the private IP address of the repository in the pip.conf �le uploaded to the
/config/pip/ folder in the Cloud Storage bucket.

Installing a Python dependency to a private IP environment in a
VPC Service Controls perimeter

Protecting your project with a VPC Service Controls perimeter
 (/composer/docs/concepts/features#vpc-service-controls) results in further security restrictions. In
particular, Cloud Build cannot be used for package installation, preventing direct access to
repositories on the public internet.

To install Python dependencies for a private IP Composer environment inside a perimeter, you
have some options:

1. Use a private PyPI repository hosted in your VPC network (as described in the section
above (#install-private-ip)).

2. Use a proxy server (https://pip.pypa.io/en/stable/user_guide/#using-a-proxy-server%20VM) in
your VPC network to connect to a PyPI repository on the public internet. Specify the proxy
address in the /config/pip/pip.conf �le in the Cloud Storage bucket.

https://cloud.google.com/composer/docs/concepts/features#vpc-service-controls
https://pip.pypa.io/en/stable/user_guide/#using-a-proxy-server%20VM

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 7/12

s-samples/blob/c5635d1146fc2c0ff284c41d4b2d1132b25ae270/composer/work�ows/use_local_deps.py)

3. If your security policy permits access to your VPC network from external IP addresses, you
can enable this by con�guring Cloud NAT (/nat/docs/overview).

4. Vendor the Python dependencies into the dags folder in the Cloud Storage bucket to install
them as local libraries (#install-local). This may not be a good option if the dependency tree
is large.

Installing a local Python library

To install an in-house or local Python library:

1. Place the dependencies within a subdirectory in the dags/ folder. To import a module from
a subdirectory, each subdirectory in the module's path must contain a __init__.py
package marker �le.

In this example, the dependency is coin_module.py:

2. Import the dependency from the DAG de�nition �le.

For example:

An import error occurs if an __init__.py �le is missing. Directory and �le names must be valid Python identi�

dags/

 use_local_deps.py # A DAG file.

 dependencies/

 __init__.py

 coin_module.py

from dependencies import coin_module

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/c5635d1146fc2c0ff284c41d4b2d1132b25ae270/composer/workflows/use_local_deps.py
https://cloud.google.com/nat/docs/overview

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 8/12

Using Python packages that depend on shared object libraries

Certain PyPI packages depend on system-level libraries. While Cloud Composer does not
support system libraries, you can use the following options:

1. Use the KubernetesPodOperator (/composer/docs/how-to/using/using-kubernetes-pod-operator)

. Set the Operator image to a custom build image. If you experience packages that fail
during installation due to an unmet system dependency, use this option.

2. Upload the shared object libraries to your environment's Cloud Storage bucket.

a. Manually �nd the shared object libraries for the PyPI dependency (an .so �le).

b. Upload the shared object libraries to /home/airflow/gcs/plugins.

c. Set the following Cloud Composer environment variable:
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/airflow/gcs/plugins

If your PyPI packages have installed successfully but fail at runtime, this is an option.

Files in the plugins/ folders are synced to the local �le system (/composer/docs/concepts/cloud-storage).

ding large .so �les can affect the performance of your environment and the Air�ow web server

mposer/docs/how-to/accessing/air�ow-web-interface).

Connecting to the Flower web inte�ace

Flower (http://�ower.readthedocs.io/en/latest/) is a web-based tool for working with Celery
clusters. Flower is pre-installed in your environment. You can use its web UI to monitor the
Apache Air�ow workers for your environment.

To access Flower:

1. To determine the Kubernetes Engine cluster, view your environment:

gcloud composer environments describe ENVIRONMENT-NAME /

 --location LOCATION

https://cloud.google.com/composer/docs/how-to/using/using-kubernetes-pod-operator
https://cloud.google.com/composer/docs/concepts/cloud-storage
https://cloud.google.com/composer/docs/how-to/accessing/airflow-web-interface
http://flower.readthedocs.io/en/latest/

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 9/12

The cluster is listed as the gkeCluster. The zone where the cluster is deployed is listed as
the location.

For example:

In the example, the cluster is us-central1-environment-name-00a47695-gke, and the zone
is us-central1-a. This information is also available on the Environment details
 (/composer/docs/how-to/managing/updating#details) page in the Cloud Console.

2. Connect to the Kubernetes Engine cluster:

For example:

3. View the worker pods and select the pod to run Flower on:

For example:

 gcloud composer environments describe environment-name --location us-cent

 config:

 airflowUri: https://uNNNNe0aNNbcd3fff-tp.appspot.com

 dagGcsPrefix: gs://us-central1-may18-test-00a47695-bucket/dags

 gkeCluster: projects/example-project/zones/us-central1-a/clusters/us-ce

 nodeConfig:

 diskSizeGb: 100

 location: projects/example-project/zones/us-central1-a

gcloud container clusters get-credentials CLUSTER_NAME /

 --zone CLUSTER_ZONE

gcloud container clusters get-credentials us-central1-environment-name-00a47695

Fetching cluster endpoint and auth data.

kubeconfig entry generated for us-central1-environment-name-00a47695-gke.

kubectl get pods --all-namespaces | grep worker

https://cloud.google.com/composer/docs/how-to/managing/updating#details

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 10/12

The pod names match the regex "airflow-(worker|scheduler)-[-a-f0-9]+").

4. Run Flower on the worker pod:

Note: The parameters for airflow flower are read automatically from your environment's Air�ow

con�guration. For parameter details, see the Air�ow documentation

 (https://air�ow.apache.org/docs/stable/cli-ref#�ower).

For example:

5. In a separate terminal session, use kubectl to forward a port on your local machine to the
pod running the Flower UI:

For example:

kubectl get pods --all-namespaces | grep worker

airflow-worker-89696c45f-49rkb 2/2 Running 1 29d

airflow-worker-89696c45f-gccmm 2/2 Running 1 29d

airflow-worker-89696c45f-llnnx 2/2 Running 0 29d

kubectl exec -n NAMESPACE -it POD_NAME -c airflow-worker -- airflow flower

kubectl exec -n composer-1-6-0-airflow-1-10-1-9670c487 -it airflow-worker-89696

 -c airflow-worker -- airflow flower

[I 180601 20:35:55 command:139] Visit me at http://0.0.0.0:5555

[I 180601 20:35:55 command:144] Broker: redis://airflow-redis-service.default.s

kubectl -n NAMESPACE port-forward POD_NAME 5555

kubectl -n composer-1-6-0-airflow-1-10-1-9670c487 port-forward airflow-worker-c

https://airflow.apache.org/docs/stable/cli-ref#flower

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 11/12

6. To access the web UI, go to http://localhost:5555 in your local browser.

Installing SQLAlchemy to access the Ai�low database

SQLAlchemy (https://www.sqlalchemy.org/) is a Python SQL toolkit and Object Relational Mapper
(ORM). You can install SQLAlchemy and use it to access the Cloud SQL instance for Cloud
Composer. During installation, Cloud Composer con�gures the Air�ow environment variable
AIRFLOW__CORE__SQL_ALCHEMY_CONN.

To install SQL Alchemy:

1. Install sqlalchemy in your environment.

2. To determine the Kubernetes Engine cluster, view your environment:

3. Connect to the Kubernetes Engine cluster:

4. View the worker pods and select the pod to connect to:

Forwarding from 127.0.0.1:5555 -> 5555

gcloud composer environments update ENVIRONMENT-NAME /

 --location LOCATION /

 --update-pypi-package "sqlalchemy"

gcloud composer environments describe ENVIRONMENT-NAME /

 --location LOCATION

gcloud container clusters get-credentials CLUSTER_NAME /

 --zone CLUSTER_LOCATION

kubectl get pods --all-namespaces | grep worker

https://www.sqlalchemy.org/

8/23/2020 Installing Python dependencies | Cloud Composer | Google Cloud

https://cloud.google.com/composer/docs/how-to/using/installing-python-dependencies/ 12/12

5. SSH to the worker pod:

For example:

6. Use the sqlalchemy library to interact with the Air�ow database:

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-06-30 UTC.

kubectl -n NAMESPACE exec -it POD_NAME -c airflow-worker -- /bin/bash

kubectl -n composer-1-6-0-airflow-1-10-1-9670c487 /

 exec -it airflow-worker-54c6b57789-66pnr -c airflow-worker -- /bin/bash

airflow@airflow-worker-54c6b57789-66pnr:~$

python

import airflow.configuration as config

config.conf.get('core', 'sql_alchemy_conn')

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

