
8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 1/15

This tutorial shows how to use HammerDB to perform load testing on a Compute Engine SQL
Server instance. You can learn how to install a SQL Server instance by using the following
tutorials:

Creating SQL Server instances
 (/compute/docs/instances/sql-server/creating-sql-server-instances)

Creating a high-performance SQL Server instance
 (/compute/docs/tutorials/creating-high-performance-sql-server-instance)

There are a number of load-testing tools available. Some are free and open source, while others
require licenses. HammerDB (http://www.hammerdb.com) is an open source tool that generally
works well to demonstrate the performance of your SQL Server database. This tutorial covers
the basic steps to use HammerDB, but there are other tools available, and you should select the
tools that align best to your speci�c workloads.

Objectives

Con�guring SQL Server for load testing.

Installing and running HammerDB.

Collecting runtime statistics.

Running the TPC-C load test.

Costs

In addition to any existing SQL Server instances running on Compute Engine, this tutorial uses
billable components of Google Cloud, including:

Compute Engine

Windows Server

Load testing SQL Server using HammerDB

https://cloud.google.com/compute/docs/instances/sql-server/creating-sql-server-instances
https://cloud.google.com/compute/docs/tutorials/creating-high-performance-sql-server-instance
http://www.hammerdb.com/

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 2/15

The Pricing Calculator (/products/calculator#id=7411bcbb-3399-46bf-9dd0-9642361cd988) can
generate a cost estimate based on your projected usage. The provided link shows the cost
estimate for the products used in this tutorial, which can average 16 dollars (US) per day. New
Google Cloud users might be eligible for a free trial (/free-trial).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboar

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (/billing/docs/how-to/modify-project).

4. If you aren't using Windows on your local machine, install a third-party RDP client such as
Chrome RDP
 (https://chrome.google.com/webstore/detail/chrome-rdp/cbkkbcmdlboombapidmoeolnmdacpkch)

by FusionLabs.

Con�guring the SQL Server instance for load testing

Before you start, you should double check that your Windows �rewall rules
 (https://msdn.microsoft.com/en-us/library/cc646023.aspx) are set up to allow tra�c from the IP
address of the new Windows instance you created. Then, create a new database for TPCC load
testing and con�gure a user account using the following steps:

https://cloud.google.com/products/calculator#id=7411bcbb-3399-46bf-9dd0-9642361cd988
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://chrome.google.com/webstore/detail/chrome-rdp/cbkkbcmdlboombapidmoeolnmdacpkch
https://msdn.microsoft.com/en-us/library/cc646023.aspx

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 3/15

1. Right-click the Databases folder in SQL Server Management Studio, and then choose New
Database.

2. Name the new database "TPCC".

3. Set the initial size of the data �le to 190,000 MB and the log �le to 65,000 MB.

4. Set the Autogrowth limits to higher values by clicking the ellipsis buttons, as shown in the
following screenshot:

5. Set the data �le to grow by 64 MB to unlimited size.

6. Set the log �le to disable auto-growth.

7. Click OK.

8. In the New Database dialog, in the left pane, choose the Options page.

9. Set Compatibility level to SQL Server 2012 (110).

10. Set the Recovery model to Simple, so that the loading doesn’t �ll up the transaction logs.

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 4/15

11. Click OK to create the TPCC database, which can take a few minutes to complete.

12. The precon�gured SQL Server image comes with only Windows Authentication enabled,
so you will need to enable mixed mode authentication within SSMS, by following this
guide (https://msdn.microsoft.com/en-us/library/ms188670(v=sql.120).aspx).

13. Follow these steps (https://msdn.microsoft.com/en-us/library/aa337562.aspx) to create a new
SQL Server user account on your database server that has the DBOwner permission.
Name the account "loaduser" and give it a secure password.

14. Take note of your SQL Server internal IP address by using the Get- NetIPAddress
commandlet, because it’s important for performance and security to use the internal IP.

Installing HammerDB

You can run HammerDB directly on your SQL Server instance. However, for a more accurate
test, create a new Windows instance and test the SQL Server instance remotely.

Note: You might need to disable Internet Explorer Enhanced Security Con�guration

 (https://technet.microsoft.com/en-us/library/dd883248(v=ws.10).aspx) before downloading �les to your

Windows Server instance.

Creating an instance

Follow these steps to create a new Compute Engine instance:

1. In the Google Cloud Console, go to the VM Instances page.

GO TO THE VM INSTANCES PAGE (https://console.cloud.google.com/compute/instancesAdd)

2. Set Name to hammerdb-instance.

3. Set Machine con�guration to at least half the number of CPUs as your database
instance.

4. In the Boot disk section, click Change to begin con�guring your boot disk.

5. In the Public images tab, choose Windows Server 2012 R2.

https://msdn.microsoft.com/en-us/library/ms188670(v=sql.120).aspx
https://msdn.microsoft.com/en-us/library/aa337562.aspx
https://technet.microsoft.com/en-us/library/dd883248(v=ws.10).aspx
https://console.cloud.google.com/compute/instancesAdd

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 5/15

6. In the Boot disk type section, select Standard persistent disk.

7. Click Save to con�rm your boot disk options.

8. Click Create.

Installing the so�ware

When it's ready, RDP to your new Windows Server instance and install the following software:

SQL Server native client (http://go.microsoft.com/fwlink/?LinkID=239648&clcid=0x409)

HammerDB for Windows 64-bit (http://www.hammerdb.com/download.html)

Running HammerDB

After you install HammerDB, run the hammerdb.bat �le. HammberDB does not show up in the
Start menu’s applications list. Use the following command to run HammerDB:

Creating the connection and schema

When the application is running, the �rst step is to con�gure the connection to build the
schema.

1. Double-click SQL Server in the Benchmark panel.

2. Choose TPC-C, an acronym that stands for: Transaction Processing Performance Council
- Benchmark C. From the TPC.org site (http://www.tpc.org/):

TPC-C involves a mix of �ve concurrent transactions of different types and complexity
either executed online or queued for deferred execution. The database is comprised of
nine types of tables with a wide range of record and population sizes. TPC-C is
measured in transactions per minute (tpmC).

3. Click OK

C:\Program Files\HammerDB-2.20\hammerdb.bat

http://go.microsoft.com/fwlink/?LinkID=239648&clcid=0x409
http://www.hammerdb.com/download.html
http://www.tpc.org/

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 6/15

4. In the Benchmark panel, next to SQL Server, click the plus sign (+) to expand the options.

5. Below TPC-C, click Schema Build and then double click Options.

6. Fill out the form to look like the �gure below, using your IP address, username, and
password.

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 7/15

7. For the Schema option, choose Updated, which creates a better TPC-C schema with more
appropriate structure and better indexes.

8. In this case, the Number of Warehouses (the scale) is set to 2000, but you don’t have to
set it that high, because creating 2000 warehouses will take several hours to complete.
Some guidelines suggest 10 to 100 warehouses per CPU. For this tutorial, set this value to
10 times the number of cores: 160 for a 16-core instance.

9. For Virtual Users to Build Schema, choose a number that is between 1- and 2-times the
number of client vCPUs. You can click the grey bar next to the slider to increment the
number.

10. Click OK

11. Double click the Build option below the Schema Build section to create the schema and
load the tables. When that completes, click the red �ash light icon in the top center of the
screen to destroy the virtual user and move to the next step.

If you created your database with the Simple recovery model, you might want to change it back
to Full at this point to get a more accurate test of a production scenario. This will not take

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 8/15

effect until after you take a full or differential backup to trigger the start of the new log chain.

Important: If you plan to run multiple tests, make a full backup of your new TPC-C database

 (https://msdn.microsoft.com/en-us/library/ms187510(v=sql.120).aspx#SSMSProcedure), so that you can

restore it later. Backing up can save you time compared to creating the database again by using the tool. If

you revert the database to a Full recovery model, you should backup the transaction logs to clear them out

after each test.

Creating the driver script

HammerDB uses the driver script to orchestrate the �ow of SQL statements to the database to
generate the required load.

1. In the Benchmark panel, expand the Driver Script section and double-click Options.

2. Verify the settings match what you used in the Schema Build dialog.

3. Choose Timed Test Driver Script.

4. The Checkpoint when complete option forces the database to write everything to disk at
the end of the test, so check this only if you plan on running multiple tests in a row.

5. To ensure a thorough test, set Minutes of Rampup Time to 5 and Minutes for Test
Duration to 20.

6. Click OK to exit the dialog.

7. Double-click Load in the Driver Script section of the Benchmark panel to activate the
driver script.

https://msdn.microsoft.com/en-us/library/ms187510(v=sql.120).aspx#SSMSProcedure

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 9/15

)

Creating vi�ual users

Creating a realistic load typically requires running scripts as multiple different users. Create
some virtual users for the test.

1. Expand the Virtual Users section and double click Options.

2. If you set your warehouse count (scale) to 160, then set the Virtual Users to 16, because
the TPC-C guidelines recommend a 10x ratio to prevent row locking. Select the Show
Output checkbox to enable error messages in the console.

3. Click OK

Collecting runtime statistics

HammerDB and SQL Server don’t easily collect detailed runtime statistics for you. Although the
statistics are available deep within SQL Server, they need to be captured and calculated on a

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 10/15

regular basis. If you do not already have a procedure or tool to help capture this data, you can
use the procedure below to capture some useful metrics during your testing. The results will be
written to a CSV �le in the Windows temp directory. You can copy the data to a Google Sheet
using the Paste Special > Paste CSV option.

To use this procedure, you �rst must temporarily enable OLE Automation Procedures to write
the �le to disk,. Remember to disable it after testing:

Note: Although this procedure is very small, it can affect the total throughput reported by a fraction of a

percent.

Here’s the code to create the sp_write_performance_counters procedure in SQL Server
Management Studio. Before starting the load test, you will execute this procedure in
Management Studio.:

sp_configure 'show advanced options', 1;

GO

RECONFIGURE;

GO

sp_configure 'Ole Automation Procedures', 1;

GO

RECONFIGURE;

GO

USE [master]

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

/***

LogFile path has to be in a directory that SQL Server can Write To.

*/

CREATE PROCEDURE [dbo].[sp_write_performance_counters] @LogFile varchar (2000) = 'C:

AS

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 11/15

BEGIN

--File writing variables

DECLARE @OACreate INT, @OAFile INT, @FileName VARCHAR(2000), @RowText VARCHAR(500),

--Variables to save last counter values

DECLARE @LastTPS BIGINT, @LastLRS BIGINT, @LastLTS BIGINT, @LastLWS BIGINT, @LastNDS

--Variables to save current counter values

DECLARE @TPS BIGINT, @Active BIGINT, @SCM BIGINT, @LRS BIGINT, @LTS BIGINT, @LWS BIG

SELECT @Loops = case when (@SecondsToRun % @RunIntervalSeconds) > 5 then @SecondsToR

SET @LoopCounter = 0

SELECT @WaitForSeconds = CONVERT(varchar, DATEADD(s, @RunIntervalSeconds , 0), 114)

SELECT @FileName = @LogFile + FORMAT (GETDATE(), '-MM-dd-yyyy_m', 'en-US') + '.txt

--Create the File Handler and Open the File

EXECUTE sp_OACreate 'Scripting.FileSystemObject', @OACreate OUT

EXECUTE sp_OAMethod @OACreate, 'OpenTextFile', @OAFile OUT, @FileName, 2, True, -2

--Write the Header

EXECUTE sp_OAMethod @OAFile, 'WriteLine', NULL,'Transactions/sec, Active Transaction

--Collect Initial Sample Values

SET ANSI_WARNINGS OFF

SELECT

 @LastTPS= max(case when counter_name = 'Transactions/sec' then cntr_value end),

 @LastLRS = max(case when counter_name = 'Lock Requests/sec' then cntr_value end),

 @LastLTS = max(case when counter_name = 'Lock Timeouts/sec' then cntr_value end),

 @LastLWS = max(case when counter_name = 'Lock Waits/sec' then cntr_value end),

 @LastNDS = max(case when counter_name = 'Number of Deadlocks/sec' then cntr_value

 @LastAWT = max(case when counter_name = 'Average Wait Time (ms)' then cntr_value e

 @LastAWT_Base = max(case when counter_name = 'Average Wait Time base' then cntr_va

 @LastALWT = max(case when counter_name = 'Average Latch Wait Time (ms)' then cntr_

 @LastALWT_Base = max(case when counter_name = 'Average Latch Wait Time base' then

FROM sys.dm_os_performance_counters

WHERE counter_name IN (

'Transactions/sec',

'Lock Requests/sec',

'Lock Timeouts/sec',

'Lock Waits/sec',

'Number of Deadlocks/sec',

'Average Wait Time (ms)',

'Average Wait Time base',

'Average Latch Wait Time (ms)',

'Average Latch Wait Time base') AND instance_name IN('_Total' ,'')

SET ANSI_WARNINGS ON

WHILE @LoopCounter <= @Loops

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 12/15

BEGIN

WAITFOR DELAY @WaitForSeconds

SET ANSI_WARNINGS OFF

SELECT

 @TPS= max(case when counter_name = 'Transactions/sec' then cntr_value end) ,

 @Active = max(case when counter_name = 'Active Transactions' then cntr_value end)

 @SCM = max(case when counter_name = 'SQL Cache Memory (KB)' then cntr_value end)

 @LRS = max(case when counter_name = 'Lock Requests/sec' then cntr_value end) ,

 @LTS = max(case when counter_name = 'Lock Timeouts/sec' then cntr_value end) ,

 @LWS = max(case when counter_name = 'Lock Waits/sec' then cntr_value end) ,

 @NDS = max(case when counter_name = 'Number of Deadlocks/sec' then cntr_value end)

 @AWT = max(case when counter_name = 'Average Wait Time (ms)' then cntr_value end)

 @AWT_Base = max(case when counter_name = 'Average Wait Time base' then cntr_value

 @ALWT = max(case when counter_name = 'Average Latch Wait Time (ms)' then cntr_valu

 @ALWT_Base = max(case when counter_name = 'Average Latch Wait Time base' then cntr

FROM sys.dm_os_performance_counters

WHERE counter_name IN (

'Transactions/sec',

'Active Transactions',

'SQL Cache Memory (KB)',

'Lock Requests/sec',

'Lock Timeouts/sec',

'Lock Waits/sec',

'Number of Deadlocks/sec',

'Average Wait Time (ms)',

'Average Wait Time base',

'Average Latch Wait Time (ms)',

'Average Latch Wait Time base') AND instance_name IN('_Total' ,'')

SET ANSI_WARNINGS ON

SELECT @AWT_DIV = case when (@AWT_Base - @LastAWT_Base) > 0 then (@AWT_Base - @Last

 @ALWT_DIV = case when (@ALWT_Base - @LastALWT_Base) > 0 then (@ALWT_Base - @Last

SELECT @RowText = '' + convert(varchar, (@TPS - @LastTPS)/@RunIntervalSeconds) + ',

 convert(varchar, @Active) + ', ' +

 convert(varchar, @SCM) + ', ' +

 convert(varchar, (@LRS - @LastLRS)/@RunIntervalSeconds) + ', ' +

 convert(varchar, (@LTS - @LastLTS)/@RunIntervalSeconds) + ', ' +

 convert(varchar, (@LWS - @LastLWS)/@RunIntervalSeconds) + ', ' +

 convert(varchar, (@NDS - @LastNDS)/@RunIntervalSeconds) + ', ' +

 convert(varchar, (@AWT - @LastAWT)/@AWT_DIV) + ', ' +

 convert(varchar, (@ALWT - @LastALWT)/@ALWT_DIV)

SELECT @LastTPS = @TPS,

 @LastLRS = @LRS,

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 13/15

Running the TPC-C load test

In SQL Server Management Studio, execute the collection procedure using the following script:

On the Compute Engine instance where you installed HammerDB, start the test in the
HammerDB application:

1. In the Benchmark panel, under Virtual Users double-click Create to create the virtual
users, which will activate the Virtual User Output tab.

2. Double-click Run just below the Create option to kick off the test.

 @LastLTS = @LTS,

 @LastLWS = @LWS,

 @LastNDS = @NDS,

 @LastAWT = @AWT,

 @LastAWT_Base = @AWT_Base,

 @LastALWT = @ALWT,

 @LastALWT_Base = @ALWT_Base

EXECUTE sp_OAMethod @OAFile, 'WriteLine', Null, @RowText

SET @LoopCounter = @LoopCounter + 1

END

--CLEAN UP

EXECUTE sp_OADestroy @OAFile

EXECUTE sp_OADestroy @OACreate

print 'Completed Logging Performance Metrics to file: ' + @FileName

END

GO

Use master

Go

exec dbo.sp_write_performance_counters

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 14/15

3. When the test completes you will see the Transactions Per Minute (TPM) calculation in
the Virtual User Output tab.

4. You can �nd the results from your collection procedure in the c:\Windows\temp directory.

5. Save all of these values to a Google Sheet and use them to compare multiple test runs.

Cleaning up

After you've �nished the SQL Server load-testing tutorial, you can clean up the resources that
you created on Google Cloud so they won't take up quota and you won't be billed for them in the
future. The following sections describe how to delete or turn off these resources.

Deleting the project

The easiest way to eliminate billing is to delete the project that you created for the tutorial.

To delete the project:

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

Go to the Manage resources page (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project that you want to delete and then click Delete .

3. In the dialog, type the project ID and then click Shut down to delete the project.

https://console.cloud.google.com/iam-admin/projects

8/23/2020 Load testing SQL Server using HammerDB | Compute Engine Documentation

https://cloud.google.com/compute/docs/tutorials/load-testing-sql-server-hammerdb/ 15/15

Deleting instances

To delete a Compute Engine instance:

1. In the Cloud Console, go to the VM Instances page.

Go to the VM Instances page (https://console.cloud.google.com/compute/instances)

2. Click the checkbox for the instance you want to delete.

3. Click Delete to delete the instance.

What's next

Review the SQL Server best practices guide
 (/compute/docs/instances/sql-server/best-practices).

Try out other Google Cloud features for yourself. Have a look at our tutorials
 (/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-06-23 UTC.

https://console.cloud.google.com/compute/instances
https://cloud.google.com/compute/docs/instances/sql-server/best-practices
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

