8/23/2020 Developing interactively with Apache Beam notebooks | Cloud Dataflow

Developing interactively with Apache Beam
notebooks

ature is covered by the Pre-GA Offerings Terms (/terms/service-terms#1) of the Google Cloud Platform Terms

2. Pre-GA features may have limited support, and changes to pre-GA features may not be compatible with oths

'sions. For more information, see the launch stage descriptions (/products#product-launch-stages).

Using the Apache Beam interactive runner with JupyterLab notebooks lets you iteratively
develop pipelines, inspect your pipeline graph, and parse individual PCollections in a read-eval-
print-loop (REPL) workflow. These Apache Beam notebooks are made available through Al
Platform Notebooks (/ai-platform/notebooks/docs), @ managed service that hosts notebook virtual
machines pre-installed with the latest data science and machine learning frameworks.

This guide focuses on the functionality introduced by Apache Beam notebooks, but does not
show how to build one. For more information on Apache Beam, see the Apache Beam
programming_guide (https:/beam.apache.org/documentation/programming-guide/).

Apache Beam notebooks currently only support Python. Apache Beam pipeline segments running in these
»oks arerun in a test environment, and not against a production Apache Beam runner; however, users can exg
es created in an Apache Beam notebook and launch them on the Dataflow service. For more details, see Laun

ow jobs from your notebook (#launching_dataflow_jobs_from_your_notebook).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
(https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/ 1/10

https://cloud.google.com/terms/service-terms#1
https://cloud.google.com/products#product-launch-stages
https://cloud.google.com/ai-platform/notebooks/docs
https://beam.apache.org/documentation/programming-guide/
https://accounts.google.com/Login
https://accounts.google.com/SignUp

8/23/2020 Developing interactively with Apache Beam notebooks | Cloud Dataflow

* Note: If you don't plan to keep the resources that you create in this procedure, create a project instead
of selecting an existing project. After you finish these steps, you can delete the project, removing all
resources associated with the project.

3. Make sure that billing is enabled for your Google Cloud project. Learn how to confirm
billing_is enabled for your project (/billing/docs/how-to/modify-project).

4. Enable the Compute Engine API.

Enable additional APIs for pipelines that use other services, such as Pub/Sub, before creating your Apache Be:

»ok instance.

When you finish this guide, you can avoid continued billing by deleting the resources you
created. For more details, see Cleaning_up (#cleaning_up).

Launching an Apache Beam notebooks instance

1. In the Google Cloud Console, on the project selector page, select or create a Google Cloud
project.

2. Navigate to Dataflow in the side panel and click Notebooks.
3. In the toolbar, click 4+ New Instance.
4. Select Apache Beam.

5. On the New notebook instance page, select a network for the notebook VM and click
Create.

6. (Optional) If you want to set up a custom notebook instance, click Customize. For more
information on customizing instance properties, see Create an Al Platform Notebooks

instance with specific properties (/ai-platform/notebooks/docs/create-new#create-with-options).

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/ 2/10

https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=compute.googleapis.com
https://cloud.google.com/ai-platform/notebooks/docs/create-new#create-with-options

8/23/2020 Developing interactively with Apache Beam notebooks | Cloud Dataflow

7. Click Open JupyterLab when the link becomes active. Al Platform Notebooks creates a
new Apache Beam notebook instance.

Installing dependencies (Optional)

Apache Beam notebooks already come with Apache Beam and Google Cloud connector
dependencies installed. If your pipeline contains custom connectors or custom PTransforms
that depend on third-party libraries, you can install them after you create a notebook instance.
For more information, see Installing Dependencies (/ai-platform/notebooks/docs/dependencies) in

the Al Platform Notebooks documentation.

Getting started with Apache Beam notebooks

After opening an Al Platform Notebooks instance, example notebooks are available in the
Examples folder. The following are currently available:

Word Count

Streaming Word Count

Streaming NYC Taxi Ride Data

Dataflow Word Count

These notebooks include explanatory text and commented code blocks to help you understand
Apache Beam concepts and API usage.

Example code from the Streaming Word Count notebook is used in the following sections. There might be som

discrepancies between the code snippets in this guide and what is found in the Streaming Word Count notebo

Creating a notebook instance

Navigate to File > New > Notebook and select a kernel that is Apache Beam 2.22 or later.

Apache Beam notebooks are built against the master branch of the Apache Beam SDK. This means that the la

1 of the kernel shown in the notebooks Ul might be ahead of the most recently released version of the SDK.

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/ 3/10

https://cloud.google.com/ai-platform/notebooks/docs/dependencies

8/23/2020 Developing interactively with Apache Beam notebooks | Cloud Dataflow

Apache Beam is installed on your notebook instance, so include the interactive_runner and
interactive_beam modules in your notebook.

t apache_beam as beam
apache_beam. runners.interactive.interactive_runner import InteractiveRunner
t apache_beam.runners.interactive.interactive_beam as ib

If your notebook uses other Google APls, add the following import statements:

apache_beam.options import pipeline_options
apache_beam.options.pipeline_options import GoogleCloudOptions
t google.auth

Setting interactivity options

The following sets the data capture duration to 60 seconds.

tions.capture_duration = timedelta(seconds=60)

For additional interactive options, see the interactive_beam.options class

(https://github.com/apache/beam/blob/master/sdks/python/apache_beam/runners/interactive/interactiv
e_beam.py#L48)

Creating your pipeline

Initialize the pipeline using an InteractiveRunner object.

ns = pipeline_options.PipelineOptions()

the pipeline mode to stream the data from Pub/Sub.
ns.view_as(pipeline_options.StandardOptions).streaming = True

eam.Pipeline(InteractiveRunner(), options=options)

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/ 4/10

https://github.com/apache/beam/blob/master/sdks/python/apache_beam/runners/interactive/interactive_beam.py#L48

8/23/2020 Developing interactively with Apache Beam notebooks | Cloud Dataflow

Reading and visualizing the data

The following example shows a Apache Beam pipeline that creates a subscription to the given
Pub/Sub topic and reads from the subscription.

= p | "read" >> beam.io.ReadFromPubSub(topic=topic)

The pipeline counts the words by windows from the source. It creates fixed windowing with
each window being 10 seconds in duration.

wed_words = (words
"window" >> beam.WindowInto(beam.window.FixedWindows(10)))

After the data is windowed, the words are counted by window.

wed_words_counts = (windowed_words
"count” >> beam.combiners.Count.PerElement())

The show() method visualizes the resulting PCollection in the notebook.

ow(windowed_word_counts, include_window_info=True)

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/ 5/10

8/23/2020

ib.show(windowed_word_counts, include_window_info=True)

Developing interactively with Apache Beam notebooks | Cloud Dataflow

Interactive Beam has detected unbounded sources in your pipeline. In order to have a deterministic replay, a segment of data will be recorded from all sources for 60.0 seconds or until

a total of 1.0GB have been written to disk.

Show | 10 % |entries Search:
windowed_word_counts[0] windowed_word_counts[1] event_time windows pane_info
: , 2020-03-11 2020-03-11
Y LSaCeY 1 06:49:49.999999+0000 06:49:40.000000+0000 (10s) IR0
; _—] 2020-03-11 2020-03-11)
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
- . 2020-03-11 2020-03-11
2 LOSoss g 06:49:49.999999+0000 06:49:40.000000+0000 (10s) I
0 D] 2020-03-11 2020-03-11 0
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
4 b] 2020-03-11 2020-03-11 o
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
5 — ; 2020-03-11 2020-03-11 0
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
. —_—] 2020-03-11 2020-03-11 s
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
S 2020-03-11 2020-03-11
Z BRI U 06:49:49.999999+0000 06:49:40.000000+0000 (10s) RO
. -] 2020-03-11 2020-03-11 s
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
! ' 2020-03-11 2020-03-11
2 LEdntd U 06:49:59.999999+0000 06:49:50.000000+0000 (10s) RO
Showing 1 to 10 of 228 entries Previous 1 ‘ 2 3 4 5 23 Next

To display visualizations of your data, pass visualize_data=True into the show() method. You
can apply multiple filters to your visualizations. The following visualization allows you to filter

by label and axis:

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/

6/10

8/23/2020 Developing interactively with Apache Beam notebooks | Cloud Dataflow

Binning | X-Axis Binning | Y-Axis Color By Label By Scatter | X-Axis Scatter | Y-Axis
(none) ~ (none) ~ windowed_word_c ~ windowed_word_c ~ (default) ~ (default) -

nnnnnnn

succeed | whaspily

SPOODODOSODESN
FELEEEEEY L0

sigh, Tom

e PRI

am,had Edgar | Enter | EDGAR,)@ | pat 01d | cones

FLLE L LSS

ON star with

“f???%#+¢?%¢+¢+

AR R XL ... -

- and his, gn on,man -

MM o Mo e o * *** * ;g Colors
* * * * * * * ‘ by windowed_word_counts|[1]

make | guilty all our of that) ,are «=- sun moon o1

EEEEEEERL T

nnnnnn that when sick, 1N

R AR REDRD: «:

thee do ''''''''' And | noble true Kent = o4

R R I A e I g © 5

,,,,,,,,,,,,,,,,,,,,,,,,,,,

xxxxxx

g+

To ensure replayability while prototyping streaming pipelines, the show () method calls reuse the captured dat
t. By setting interactive_beam.options.enable_capture_replay = False, you can changethis beha
ive the show () method always fetch new data. Also, if you add a second unbounded source to your notebook
‘om the previous unbounded source is discarded.

Another useful visualization in Apache Beam notebooks is a Pandas DataFrame
(https:/pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html). The following
example first converts the words to lowercase and then computes the frequency of each word.

wed_lower_word_counts = (windowed_words
beam.Map(lambda word: word.lower())
"count" >> beam.combiners.Count.PerElement())

The collect() method provides the output in a Pandas DataFrame.

llect(windowed_lower_word_counts, include_window_info=True)

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/

7110

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

8/23/2020

Developing interactively with Apache Beam notebooks | Cloud Dataflow

ib.show(windowed_word_counts, include_window_info=True)

Interactive Beam has detected unbounded sources in your pipeline. In order to have a deterministic replay, a segment of data will be recorded from all sources for 60.0 seconds or until

a total of 1.0GB have been written to disk.

Show| 10 % |entries Search:
windowed_word_counts[0] windowed_word_counts[1] event_time windows pane_info
‘ , 2020-03-11 2020-03-11
Y LSaCeY 06:49:49.999999+0000 06:49:40.000000+0000 (10s) B0
] — 2020-03-11 2020-03-11 R
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
o . 2020-03-11 2020-03-11
2 LOSoss 06:49:49.999999+0000 06:49:40.000000+0000 (10s) I
3 . 2020-03-11 2020-03-11 RN
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
4 b 2020-03-11 2020-03-11 o
06:49:49.999999+0000 06:49:40.000000+0000 (105)
5 — 2020-03-11 2020-03-11 .
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
6 btolow 2020-03-11 2020-03-11 s
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
e 2020-03-11 2020-03-11
Z BEEIEY 06:49:49.999999+0000 06:49:40.000000+0000 (10s) RIDE
o bt 2020-03-11 2020-03-11 s
06:49:49.999999+0000 06:49:40.000000+0000 (10s)
‘ ' 2020-03-11 2020-03-11
2 LEdItS 06:49:59.999999+0000 06:49:50.000000+0000 (10s) RIDE
Showing 1 to 10 of 228 entries Previous 1 2 4 5 23 Next

Editing and re-executing a cell is a common practice in notebook development. When you edit and re-execute a

he Beam notebook, the cell does not undo the intended action of the code in the original cell. For example, if a

| PTransform to a pipeline, re-executing that cell would add an additional PTransform to the pipeline. If you wa

he state, restart the kernel and rerun the cells.

Launching Dataflow jobs from a pipeline created in your notebook

1. (Optional) Before using your notebook to run Dataflow jobs, restart the kernel, rerun all
cells, and verify the output. If you skip this step, hidden states in the notebook might
affect the job graph in the pipeline object.

2. Enable the Dataflow API

(https://console.cloud.google.com/apis/library/dataflow.googleapis.com).

3. Add the following import statement:

from apache_beam.runners import DataflowRunner

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/

8/10

https://console.cloud.google.com/apis/library/dataflow.googleapis.com

8/23/2020 Developing interactively with Apache Beam notebooks | Cloud Dataflow

4. Pass in your pipeline options (/dataflow/docs/guides/specifying-exec-params).

Set up Apache Beam pipeline options.
options = pipeline_options.PipelineOptions()

Set the project to the default project in your current Google Cloud
environment.
_, options.view_as(GoogleCloudOptions).project = google.auth.default()

Set the Google Cloud region to run Dataflow.
options.view_as(GoogleCloudOptions).region = 'us-centrall’

Choose a Cloud Storage location.
dataflow_gcs_location = 'gs://<change me>/dataflow’

Set the staging location. This location is used to stage the
Dataflow pipeline and SDK binary.
options.view_as(GoogleCloudOptions).staging_location = '%s/staging' % dataflow_

Set the temporary location. This location is used to store temporary files
or intermediate results before outputting to the sink.
options.view_as(GoogleCloudOptions).temp_location = '%s/temp' % dataflow_gcs_lo

Set the SDK location. This is used by Dataflow to locate the
SDK needed to run the pipeline.
options.view_as(pipeline_options.SetupOptions).sdk_location = (
' /root/apache-beam-custom/packages/beam/sdks/python/dist/apache-beam-%s0.ta
beam.version.__version__)

You can adjust the parameter values. For example, you can change the region value from
us-centralil.

5. Run the pipeline with DataflowRunner. This runs your job on the Dataflow service.

runner = DataflowRunner()
runner.run_pipeline(p, options=options)

p is a pipeline object from Creating_your pipeline (#creating_your_pipeline).

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/ 910

https://cloud.google.com/dataflow/docs/guides/specifying-exec-params

8/23/2020 Developing interactively with Apache Beam notebooks | Cloud Dataflow

For an example on how to perform this conversion on an interactive notebook, see the Dataflow
Word Count notebook in your notebook instance.

Alternatively, you can export your notebook as an executable script, modify the generated .py

(/dataflow/docs/guides/deploying-a-pipeline) to the Dataflow service.

Saving your notebook

Notebooks you create are saved locally in your running notebook instance. If you reset
(/compute/docs/instances/stop-start-instance#resetting_an_instance) or shut down the notebook
instance during development, those new notebooks are deleted. To keep your notebooks for
future use, download them locally to your workstation, save them to GitHub
(/ai-platform/notebooks/docs/save-to-github), or export them to a different file format.

Cleaning up

After you've finished using your Apache Beam notebook instance, clean up the resources you
created on Google Cloud by shutting down the notebook instance
(/ai-platform/notebooks/docs/shut-down).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
(https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
(https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2020-08-18 UTC.

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development/ 10/10

https://cloud.google.com/dataflow/docs/guides/deploying-a-pipeline
https://cloud.google.com/compute/docs/instances/stop-start-instance#resetting_an_instance
https://cloud.google.com/ai-platform/notebooks/docs/save-to-github
https://cloud.google.com/ai-platform/notebooks/docs/shut-down
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

