
8/23/2020 Avro I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/avro-io/ 1/4

ng: Data�ow SDK 1.x for Java is unsupported as of October 16, 2018. After August 12, 2020, Data�ow will not

sing Data�ow 1.x and below. See Migrating from Data�ow SDK 1.x for Java

a�ow/docs/guides/migrate-java-1-to-2) for migration guidance.

ocumentation on this page applies only to the Data�ow SDK 1.x for Java.

ata�ow SDK 2.x for Java and the Data�ow SDK for Python are based on Apache Beam. See the documentation

a�ow/model/programming-model-beam) for those SDKs.

The built-in Read and Write transforms for Avro �les are included in AvroIO
 (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/io/AvroIO). You can use AvroIO to
read/write both local �les (meaning �les on the system where your Java program runs) and
remote �les in Google Cloud Storage (/storage).

Note: If you want your pipeline to read or write local �les, you'll need to use the
DirectPipelineRunner to run your pipeline locally
 (/data�ow/pipelines/specifying-exec-params#LocalExecution). This is because the Google Compute
Engine instances that the Data�ow service (/data�ow/service/data�ow-service-desc) uses to run
your pipeline won't be able to access �les on your local machine for reading and writing.

Specifying an Avro Schema

To use AvroIO, you'll need to specify an Avro schema that describes the records to read or write.
Avro relies on schemas to describe how data is serialized. See the Avro documentation
 (http://avro.apache.org/docs/current) to learn how Avro schemas work.

You can read speci�c kinds of Avro records by providing an Avro-generated class type, or you
can read GenericRecords by providing an org.apache.avro.Schema object. Usually, you'll read

Avro I/O

Java

https://cloud.google.com/dataflow/docs/guides/migrate-java-1-to-2
https://cloud.google.com/dataflow/model/programming-model-beam
https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/io/AvroIO
https://cloud.google.com/storage
https://cloud.google.com/dataflow/pipelines/specifying-exec-params#LocalExecution
https://cloud.google.com/dataflow/service/dataflow-service-desc
http://avro.apache.org/docs/current

8/23/2020 Avro I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/avro-io/ 2/4

the Schema object from a schema �le (.avsc). You can also specify a Schema in JSON-encoded
string form.

To provide a schema, you use the .withSchema method with the AvroIO transform. You must
call .withSchema any time you use AvroIO.Read or AvroIO.Write.

Reading with AvroIO

The AvroIO.Read transform reads records from one or more Avro �les and creates a
PCollection in which each element represents a record. AvroIO.Read can produce a
PCollection of automatically-generated Avro class objects or of GenericRecord objects. The
kind of PCollection produced depends on the schema type that you choose.

Using an automatically-generated Avro class will result in a PCollection whose elements are
objects of that Avro class type, as shown:

To read your Avro �le(s) into a PCollection<GenericRecord>, you can pass an
org.apache.avro.Schema object or a schema written as a JSON-encoded string. The following
code sample obtains a org.apache.avro.Schema object by parsing an .avsc �le, then uses the
resulting Schema to read sharded input Avro �les from Google Cloud Storage:

Java

 PipelineOptions options = PipelineOptionsFactory.create();

 Pipeline p = Pipeline.create(options);

 PCollection<AvroAutoGenClass> records = p.apply(

 AvroIO.Read.named("ReadFromAvro")

 .from("gs://some/inputData.avro")

 .withSchema(AvroAutoGenClass.class));

Java

 PipelineOptions options = PipelineOptionsFactory.create();

 Pipeline p = Pipeline.create(options);

 Schema schema = new Schema.Parser().parse(new File("schema.avsc"));

8/23/2020 Avro I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/avro-io/ 3/4

As with other �le-based Data�ow sources, the AvroIO.Read transform can read multiple input
�les. See Reading Input Data (/data�ow/model/pipeline-io#using-reads) for more information on
how to handle multiple �les when reading from �le-based sources.

Writing with AvroIO

The AvroIO.Write transform writes a PCollection of Avro records to one or more Avro �les. To
use AvroIO.Write, you'll need to represent your �nal output data as a PCollection of either
automatically-generated Avro class objects or a PCollection of GenericRecords. You can use a
ParDo (/data�ow/model/par-do) to transform your data appropriately.

To write speci�c records, use an automatically-generated Avro class as the Avro schema:

To write GenericRecord objects, you can pass an org.apache.avro.Schema (often by parsing an
.avsc �le) or a schema written as a JSON-encoded string. The following code sample parses
an .avsc �le to obtain a Schema object, and uses it to write sharded output Avro �les to Google
Cloud Storage:

 PCollection<GenericRecord> records =

 p.apply(AvroIO.Read.named("ReadFromAvro")

 .from("gs://my_bucket/path/records-*.avro")

 .withSchema(schema));

Java

 PCollection<AvroAutoGenClass> filteredRecords = ...;

 filteredRecords.apply(AvroIO.Write.named("WriteToAvro")

 .to("gs://some/outputData.avro")

 .withSchema(AvroAutoGenClass.class)

 .withSuffix(".avro"));

Java

 Schema schema = new Schema.Parser().parse(new File("schema.avsc"));

https://cloud.google.com/dataflow/model/pipeline-io#using-reads
https://cloud.google.com/dataflow/model/par-do

8/23/2020 Avro I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/avro-io/ 4/4

Note that AvroIO.Write writes to multiple output �les by default. See Writing Output Data
 (/data�ow/model/pipeline-io#using-writes) for additional information.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-06-22 UTC.

 PCollection<GenericRecord> records = ...;

 records.apply(AvroIO.Write.named("WriteToAvro")

 .to("gs://my_bucket/path/numbers")

 .withSchema(schema)

 .withSuffix(".avro"));

https://cloud.google.com/dataflow/model/pipeline-io#using-writes
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

