
8/23/2020 BigQuery I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/bigquery-io/ 1/7

ng: Data�ow SDK 1.x for Java is unsupported as of October 16, 2018. After August 12, 2020, Data�ow will not

sing Data�ow 1.x and below. See Migrating from Data�ow SDK 1.x for Java

a�ow/docs/guides/migrate-java-1-to-2) for migration guidance.

ocumentation on this page applies only to the Data�ow SDK 1.x for Java.

ata�ow SDK 2.x for Java and the Data�ow SDK for Python are based on Apache Beam. See the Beam BigQuer

mentation (https://beam.apache.org/documentation/io/built-in/google-bigquery/) for SDK 2.x.

The Data�ow SDKs have built-in Read and Write transforms that can read data from, and write
data to, a Google BigQuery (/bigquery) table. You can read an entire table that you specify by
name, or you can read partial data by using a query string.

Specifying a BigQuery Table Name

To read or write from a BigQuery table, you must provide a fully-quali�ed BigQuery table name.
A fully-quali�ed BigQuery table name consists of three parts:

A Project ID: The ID for your Google Cloud Project. The default value comes from your
pipeline options object.

A Dataset ID: The BigQuery dataset ID, which is unique within a given Cloud Project.

A Table ID: A table ID, which is unique within a given dataset.

Note that you can use BigQueryIO without supplying a project name; if omitted, BigQueryIO uses
the default project from your PipelineOptions object.

The BigQuery Java Client API (/bigquery/client-libraries) takes an object of type TableReference to
identify the target BigQuery table. The BigQueryIO package in the Data�ow SDK for Java contains a
helper method, BigQueryIO.parseTableSpec, that you can use to construct a TableReference

BigQuery I/O

Java

https://cloud.google.com/dataflow/docs/guides/migrate-java-1-to-2
https://beam.apache.org/documentation/io/built-in/google-bigquery/
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery/client-libraries

8/23/2020 BigQuery I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/bigquery-io/ 2/7

from a String containing the three parts of your BigQuery table name.

Most of the time, you won't need to use a TableReference object explicitly; the static factory
methods for a BigQueryIO transform take the table name as a String; they then use
parseTableSpec internally to construct a TableReference object from the provided String.

Table Name String Formats

You can specify the target BigQuery table using a string containing one of the following
formats:

You can also omit project_id. If you omit project_id, Cloud Data�ow will use the default project
ID from your pipeline options object. In Java, the ID can be accessed with
PipelineOptions.getProject.

BigQuery Table Rows and Schemas

BigQueryIO read and write transforms produce and consume data as PCollections of BigQuery
TableRow objects. TableRow is part of the BigQuery Java Client API, in the package
com.google.api.services.bigquery.model.TableRow.

In addition, when writing to BigQuery, you'll need to supply a TableSchema object for the �elds you
want to write to the target table. You'll need to make use of both the BigQuery TableSchema and

 [project_id]:[dataset_id].[table_id]

 Example: "clouddataflow-readonly:samples.weather_stations"

Java

 [dataset_id].[table_id]

 Example: "samples.weather_stations"

Java

8/23/2020 BigQuery I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/bigquery-io/ 3/7

TableFieldSchema classes. These classes are de�ned in the packages
com.google.api.services.bigquery.model.TableSchema and
com.google.api.services.bigquery.model.TableFieldSchema, respectively.

Reading from BigQuery

To read from a BigQuery table, you apply a BigQueryIO.Read transform. BigQueryIO.Read
returns a PCollection of BigQuery TableRow objects, where each element in the PCollection
represents a single row in the table.

You can read an entire BigQuery table by supplying the BigQuery table name to BigQueryIO.Read
by using the .from operation. The following example code shows how to apply the
BigQueryIO.Read transform to read an entire BigQuery table:

If you don't want to read the entire table, you can supply a query string to BigQueryIO.Read by
using the .fromQuery operation. The following example code shows how to read speci�c �elds from
a BigQuery table by using a query string:

Java

 PipelineOptions options = PipelineOptionsFactory.create();

 Pipeline p = Pipeline.create(options);

 PCollection<TableRow> weatherData = p.apply(

 BigQueryIO.Read

 .named("ReadWeatherStations")

 .from("clouddataflow-readonly:samples.weather_stations"));

 PipelineOptions options = PipelineOptionsFactory.create();

 Pipeline p = Pipeline.create(options);

 PCollection<TableRow> weatherData = p.apply(

 BigQueryIO.Read

 .named("ReadYearAndTemp")

 .fromQuery("SELECT year, mean_temp FROM [samples.weather_stations]");

8/23/2020 BigQuery I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/bigquery-io/ 4/7

Alternatively, you can use BigQuery's standard SQL dialect
 (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/io/BigQueryIO.Read), as shown in
the following example:

Note that when reading from BigQuery, the integer values in the TableRow objects are encoded as
Strings to match BigQuery's exported JSON format.

When you apply a BigQueryIO.Read transform in batch mode, Data�ow invokes a BigQuery export
request (/bigquery/docs/exporting-data). Note that Data�ow's use of this API is subject to
BigQuery's Quota (https://cloud.google.com/bigquery/quota-policy#export) and Pricing
 (https://cloud.google.com/bigquery/pricing) policies.

Writing to BigQuery

To write to a BigQuery table, you apply a BigQueryIO.Write transform. You'll need to apply the
transform to a PCollection<TableRow>.

In general, you'll need to use another transform, such as ParDo (/data�ow/model/par-do), to format
your output data into a collection of BigQuery TableRow objects.

When you construct a BigQueryIO.Write transform, you'll need to provide some additional
information based on the target table. In addition to the table name, you'll need to provide the
following:

The target table's CreateDisposition. CreateDisposition speci�es whether the target
table must exist or can be created by the write operation.

PCollection<TableRow> weatherData = p.apply(

BigQueryIO.Read

 .named("ReadYearAndTemp")

 .fromQuery("SELECT year, mean_temp FROM `samples.weather_stations`")

 .usingStandardSql();

Java

https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/io/BigQueryIO.Read
https://cloud.google.com/bigquery/docs/exporting-data
https://cloud.google.com/bigquery/quota-policy#export
https://cloud.google.com/bigquery/pricing
https://cloud.google.com/dataflow/model/par-do

8/23/2020 BigQuery I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/bigquery-io/ 5/7

The target table's WriteDisposition. WriteDisposition speci�es whether the data you
write will replace an existing table, append rows to an existing table, or write only to an empty
table.

In addition, if your write operation creates a new BigQuery table, you must supply schema
information about the target table. In this case, you will need to include a TableSchema object with
your write operation.

CreateDisposition

The CreateDisposition controls whether or not your BigQuery write operation should create a
table if the target table does not exist. You specify the CreateDisposition when constructing your
BigQueryIO.Write transform by invoking the method .withCreateDisposition.

CreateDisposition is an enum with the following valid values:

BigQueryIO.Write.CreateDisposition.CREATE_NEVER: Speci�es that a table should
never be created. If the target table does not exist, the write operation fails.

BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED: Speci�es that the write
operation should create a new table if one does not exist. If you use this value, you'll need to
also supply a table schema using the .withSchema operation. CREATE_IF_NEEDED is the
default behavior.

Note that if you specify CREATE_IF_NEEDED as the CreateDisposition and you don't supply a
TableSchema, the transform may fail at runtime with a java.lang.IllegalArgumentException
if the target table does not exist.

WriteDisposition

The WriteDisposition controls how your BigQuery write operation applies to an existing table. You
specify the WriteDisposition when constructing your BigQueryIO.Write transform by invoking
the method .withWriteDisposition.

WriteDisposition is an enum with the following valid values:

BigQueryIO.Write.WriteDisposition.WRITE_TRUNCATE: Speci�es that the write
operation should replace an existing table. Any existing rows in the target table are removed,
and the new rows are added to the table.

BigQueryIO.Write.WriteDisposition.WRITE_APPEND: Speci�es that the write operation
should append the rows to the end of the existing table.

8/23/2020 BigQuery I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/bigquery-io/ 6/7

BigQueryIO.Write.WriteDisposition.WRITE_EMPTY: Speci�es that the write operation
should fail at runtime if the target table is not empty. WRITE_EMPTY is the default behavior.

When using WRITE_EMPTY for the WriteDisposition, note that the check for whether or not the
target table is empty may occur far in advance of the actual write operation. In addition, such a check
doesn't guarantee that your pipeline will have exclusive access to the table. If two programs, running
concurrently, attempt to write to the same output table with a WriteDisposition of WRITE_EMPTY,
both may succeed.

Creating a TableSchema for Writing to a New Table

If your BigQuery write operation creates a new table, you'll need to provide schema information. You
provide the schema information by creating a TableSchema object. You pass the TableSchema
using the .withSchema operation when you construct your BigQueryIO.Write transform.

A TableSchema object contains information about each �eld in the table, using objects of type
TableFieldSchema. You construct a TableSchema by �rst building a List of the �elds in the table.
Then you pass the list using the .setFields operation when you construct the TableSchema.

The following example code shows how to construct a TableSchema for a table with two �elds of
type String:

Applying a BigQueryIO.Write Transform

The following example code shows how to apply a BigQueryIO.Write transform to write a
PCollection<TableRow> to a BigQuery table. The write operation creates a table if needed; if the
table already exists, it will be replaced.

 List<TableFieldSchema> fields = new ArrayList<>();

 fields.add(new TableFieldSchema().setName("source").setType("STRING"));

 fields.add(new TableFieldSchema().setName("quote").setType("STRING"));

 TableSchema schema = new TableSchema().setFields(fields);

 PCollection<TableRow> quotes = ...;

 quotes.apply(BigQueryIO.Write

 .named("Write")

 .to("my-project:output.output_table")

 .withSchema(schema)

8/23/2020 BigQuery I/O | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/bigquery-io/ 7/7

BigQueryIO.Write uses APIs that are subject to BigQuery's Quota
 (https://cloud.google.com/bigquery/quota-policy) and Pricing (https://cloud.google.com/bigquery/pricing)
policies.

When you apply a BigQueryIO.Write transform in batch mode to write to a single table, Data�ow invokes
a BigQuery load job (/bigquery/loading-data). When you apply a BigQueryIO.Write transform in
streaming mode or in batch mode using a function to specify the destination table, Data�ow uses BigQuery's
streaming inserts (/bigquery/streaming-data-into-bigquery).

Apache Beam is a trademark of The Apache Software Foundation or its a�liates in the United States and/or other

countries.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-06-22 UTC.

 .withWriteDisposition(BigQueryIO.Write.WriteDisposition.WRITE_TRUNCATE)

 .withCreateDisposition(BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED));

™

https://cloud.google.com/bigquery/quota-policy
https://cloud.google.com/bigquery/pricing
https://cloud.google.com/bigquery/loading-data
https://cloud.google.com/bigquery/streaming-data-into-bigquery
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

