
8/23/2020 Creating Composite Transforms | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/composite-transforms/ 1/5

ng: Data�ow SDK 1.x for Java is unsupported as of October 16, 2018. After August 12, 2020, Data�ow will not

sing Data�ow 1.x and below. See Migrating from Data�ow SDK 1.x for Java

a�ow/docs/guides/migrate-java-1-to-2) for migration guidance.

ocumentation on this page applies only to the Data�ow SDK 1.x for Java.

ata�ow SDK 2.x for Java and the Data�ow SDK for Python are based on Apache Beam. See the documentation

a�ow/model/programming-model-beam) for those SDKs.

Transforms in the Data�ow SDK can have a nested structure, in which you can compose a
complex transform from multiple simpler transforms. Such a transform might be composed of
multiple other transform operations (i.e., they might perform more than one ParDo, Combine, or
GroupByKey). These transforms are called composite transforms. Composite transforms are
useful if you want to create a reusable transform consisting of multiple steps.

Nesting multiple transforms inside a single composite transform can provide multiple bene�ts
to your Data�ow pipeline:

Composite transforms can make your code more modular and easier to understand,
promoting code reuse.

The Data�ow Monitoring Interface (/data�ow/pipelines/data�ow-monitoring-intf) can refer to
composite transforms by name, making it easier for you to track and understand your
pipeline's progress at runtime.

An Example of a Composite Transform

Many of the pre-written transforms (/data�ow/model/library-transforms) in the Data�ow SDKs are
composite transforms.

The CountWords transform in the Data�ow SDK WordCount example program
 (/data�ow/examples/wordcount-example) is an example of a composite transform. CountWords is
a PTransform subclass that is made up of multiple nested transforms.

Creating Composite Transforms

https://cloud.google.com/dataflow/docs/guides/migrate-java-1-to-2
https://cloud.google.com/dataflow/model/programming-model-beam
https://cloud.google.com/dataflow/pipelines/dataflow-monitoring-intf
https://cloud.google.com/dataflow/model/library-transforms
https://cloud.google.com/dataflow/examples/wordcount-example

8/23/2020 Creating Composite Transforms | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/composite-transforms/ 2/5

In its apply method, the CountWords transform applies the following transform operations:

1. It applies a ParDo on the input PCollection of text lines, producing an output PCollection
of individual words.

2. It applies the Data�ow SDK library transform Count* on the PCollection of words,
producing a PCollection of key/value pairs. Each key represents a word in the text, and
each value represents the number of times that word appeared in the original data.

3. It applies a �nal ParDo to the PCollection of key/value pairs to produce a PCollection of
printable strings suitable for writing to an output �le.

Figure 1 shows a diagram of how the pipeline containing CountWords is structured using
composite transforms.

Figure 1: A breakdown of the composite CountWords transform

Your composite transform's parameters and return value must match the initial input type and �nal
return type for the entire transform. For example, CountWords.apply accepts an input
PCollection<String> and returns a PCollection<String>, even though the transform's
intermediate data changes type multiple times:

Java

 static class CountWords

 extends PTransform<PCollection<String>, PCollection<String>> {

 @Override

8/23/2020 Creating Composite Transforms | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/composite-transforms/ 3/5

Creating a Composite Transform

You can create your own composite transform by creating a subclass of the Ptransform class
in the Data�ow SDK and overriding the apply method to specify the actual processing logic.
You can then use this transform just as you would a built-in transform from the SDK.

For the PTransform class type parameters, you pass the PCollection types that your transform
takes as input and produces as output. To take multiple PCollections as input, or produce multiple
PCollections as output, use one of the multi-collection types (/data�ow/model/multiple-pcollections)
for the relevant type parameter.

The following code sample shows how to declare a PTransform that accepts a PCollection of
Strings for input and outputs a PCollection of Integers:

 public PCollection<String> apply(PCollection<String> lines) {

 PCollection<String> words = lines.apply(

 ParDo

 .named("ExtractWords")

 .of(new ExtractWordsFn()));

 PCollection<KV<String, Integer>> wordCounts =

 words.apply(Count.<String>perElement());

 PCollection<String> results = wordCounts.apply(

 ParDo

 .named("FormatCounts")

 .of(new DoFn<KV<String, Integer>, String>() {

 @Override

 public void processElement(ProcessContext c) {

 c.output(c.element().getKey() + ": " + c.element().getValue());

 }

 }));

 return results;

 }

 }

Java

https://cloud.google.com/dataflow/model/multiple-pcollections

8/23/2020 Creating Composite Transforms | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/composite-transforms/ 4/5



Overriding the Apply Method

Within your PTransform subclass, you'll need to override the apply method. apply is where you
add the processing logic for the PTransform. Your override of apply must accept the appropriate
type of input PCollection as a parameter, and specify the output PCollection as the return
value.

The following code sample shows how to override apply for the ComputeWordLengths class
declared in the previous example:

As long as you override the apply method in your PTransform subclass to accept the
appropriate input PCollection(s) and return the corresponding output PCollection(s), you can
include as many transforms as you want. These transforms can include core transforms,
composite transforms, or the transforms included in the libraries in the Data�ow SDKs.

The apply method of a PTransform is not meant to be invoked directly by the user of a transform.
Instead, you should call the apply method (/data�ow/model/transforms) on the PCollection itself

 static class ComputeWordLengths

 extends PTransform<PCollection<String>, PCollection<Integer>> {

 ...

 }

Java

 static class ComputeWordLengths

 extends PTransform<PCollection<String>, PCollection<Integer>> {

 @Override

 public PCollection<Integer> apply(PCollection<String>) {

 ...

 // transform logic goes here

 ...

 }

Java

https://cloud.google.com/dataflow/model/transforms

8/23/2020 Creating Composite Transforms | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/composite-transforms/ 5/5

with the transform as an argument. This allows transforms to be nested within the structure of your
pipeline.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-06-22 UTC.

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

