
8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 1/13

ng: Data�ow SDK 1.x for Java is unsupported as of October 16, 2018. After August 12, 2020, Data�ow will not

sing Data�ow 1.x and below. See Migrating from Data�ow SDK 1.x for Java

a�ow/docs/guides/migrate-java-1-to-2) for migration guidance.

ocumentation on this page applies only to the Data�ow SDK 1.x for Java.

ata�ow SDK 2.x for Java and the Data�ow SDK for Python are based on Apache Beam. See the documentation

a�ow/model/programming-model-beam) for those SDKs.

The Data�ow SDKs use a concept called Windowing to subdivide a PCollection
 (/data�ow/model/pcollection) according to the timestamps of its individual elements. Data�ow
transforms (/data�ow/model/transforms) that aggregate multiple elements, such as GroupByKey
 (/data�ow/model/group-by-key) and Combine (/data�ow/model/combine), work implicitly on a per-
window basis—that is, they process each PCollection as a succession of multiple, �nite
windows, though the entire collection itself may be of unlimited or in�nite size.

The Data�ow SDKs use a related concept called Triggers to determine when to "close" each
�nite window as unbounded data arrives. Using a trigger can help to re�ne the windowing
strategy for your PCollection to deal with late-arriving data or to provide early results. See
Triggers (/data�ow/model/triggers) for more information.

Windowing Basics

Windowing is most useful with an unbounded PCollection, which represents a continuously
updating data set of unknown/unlimited size (e.g. streaming data). Some Data�ow transforms,
such as GroupByKey (/data�ow/model/group-by-key) and Combine (/data�ow/model/combine),
group multiple elements by a common key. Ordinarily, that grouping operation groups all of the
elements that have the same key in the entire data set. With an unbounded data set, it is
impossible to collect all of the elements, since new elements are constantly being added.

In the Data�ow model, any PCollection can be subdivided into logical windows. Each element
in a PCollection gets assigned to one or more windows according to the PCollection's

Windowing

https://cloud.google.com/dataflow/docs/guides/migrate-java-1-to-2
https://cloud.google.com/dataflow/model/programming-model-beam
https://cloud.google.com/dataflow/model/pcollection
https://cloud.google.com/dataflow/model/transforms
https://cloud.google.com/dataflow/model/group-by-key
https://cloud.google.com/dataflow/model/combine
https://cloud.google.com/dataflow/model/triggers
https://cloud.google.com/dataflow/model/group-by-key
https://cloud.google.com/dataflow/model/combine

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 2/13

windowing function, and each individual window contains a �nite number of elements.
Grouping transforms then consider each PCollection's elements on a per-window basis.
GroupByKey, for example, implicitly groups the elements of a PCollection by key and window.
Data�ow only groups data within the same window, and doesn't group data in other windows.

on: Data�ow's default windowing behavior is to assign all elements of a PCollection to a single, global windo

or unbounded PCollections. Before you use a grouping transform such as GroupByKey on an unbounded

ection, you must set a non-global windowing function. See Setting Your PCollection's Windowing Function.

ting)

don't set a non-global windowing function for your unbounded PCollection and subsequently use a groupin

orm such as GroupByKey or Combine, your pipeline will generate an error upon construction and your Data�o

l.

an alternatively set a non-default Trigger (/data�ow/model/triggers) for a PCollection to allow the global wi

t "early" results under some other conditions.

Windowing Constraints

Once you set the windowing function for a PCollection, the elements' windows are used the
next time you apply a grouping transform to that PCollection. Data�ow performs the actual
window grouping on an as-needed basis; if you set a windowing function using the Window
transform, each element is assigned to a window, but the windows are not considered until you
group the PCollection with GroupByKey or Combine. This can have different effects on your
pipeline.

Consider the example pipeline in Figure 1 below:

Figure 1: Pipeline Applying Windowing

In the above pipeline, we create an unbounded PCollection by reading a set of key/value pairs
using PubsubIO (/data�ow/model/pubsub-io), and then apply a windowing function to that

https://cloud.google.com/dataflow/model/triggers
https://cloud.google.com/dataflow/model/pubsub-io

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 3/13

collection using the Window transform. We then apply a ParDo to the collection, and then later
group the result of that ParDo using GroupByKey. The windowing function has no effect on the
ParDo transform, because the windows are not actually used until they're needed for the
GroupByKey.

Subsequent transforms, however, are applied to the result of the GroupByKey--that is, data
grouped by both key and window.

Using Windowing With Bounded PCollections

You can use windowing with �xed-size data sets in bounded PCollections. Note, however, that
windowing considers only the implicit timestamps attached to each element of a PCollection,
and data sources that create �xed data sets (such as TextIO and BigQueryIO) assign the same
timestamp to every element. This means that all the elements are by default part of a single,
global window. Having all elements assigned to the same window will cause a pipeline to
execute in classic MapReduce batch style.

To use windowing with �xed data sets, you can assign your own timestamps (#TimeStamping) to
each element. To assign timestamps to elements, you use a ParDo transform with a DoFn that
outputs each element with a new timestamp.

Using windowing with a bounded PCollection can affect how your pipeline processes data. For
example, consider the following pipeline:

Figure 2: GroupByKey and ParDo without windowing, on a bounded collection.

In the above pipeline, we create a bounded PCollection by reading a set of key/value pairs
using TextIO (/data�ow/model/text-io). We then group the collection using GroupByKey, and apply
a ParDo transform to the grouped PCollection. In this example, the GroupByKey creates a
collection of unique keys, and then ParDo gets applied exactly once per key.

https://cloud.google.com/dataflow/model/text-io

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 4/13

Now, consider the same pipeline, but using a windowing function:

Figure 3: GroupByKey and ParDo with windowing, on a bounded collection.

As before, the pipeline creates a bounded PCollection of key/value pairs. We then set a
windowing function (/data�ow/model/windowing#Setting) for that PCollection. The GroupByKey
transform now groups the elements of the PCollection by both key and window. The
subsequent ParDo transform gets applied multiple times per key, once for each window.

Windowing Functions

The Data�ow SDKs let you de�ne different kinds of windows to divide the elements of your
PCollection. The SDK provides several windowing functions, including:

Fixed Time Windows

Sliding Time Windows

Per-Session Windows

Single Global Window

that each element can logically belong to more than one window, depending on the windowing
on you use. Sliding time windowing, for example, creates overlapping windows wherein a single

ent can be assigned to multiple windows.

Fixed Time Windows

The most simple form of windowing is a �xed time window: given a timestamped PCollection,
which might be continuously updating, each window might capture (for example) �ve minutes

https://cloud.google.com/dataflow/model/windowing#Setting

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 5/13

worth of elements.

A �xed time window represents the time interval in the data stream that de�nes a bundle of
data for processing. Consider a window that operates at �ve-minute intervals: all of the
elements in your unbounded PCollection with timestamp values between 0:00:00 and 0:04:59
belong to the �rst window, elements with timestamp values between 0:05:00 and 0:09:59
belong to the second window, and so on.

Figure 4: Fixed time windows, 30s in size.

Sliding Time Windows

A sliding time window also uses time intervals in the data stream to de�ne bundles of data;
however, with sliding time windowing, the windows overlap. Each window might capture �ve
minutes worth of data, but a new window starts every ten seconds. The frequency with which
sliding windows begin is called the period. Therefore, our example would have a window size of
�ve minutes and a period of ten seconds.

Because multiple windows overlap, most elements in a data set will belong to more than one
window. This kind of Windowing is useful for taking running averages of data; using sliding

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 6/13

time windows, you can compute a running average of the past �ve minutes' worth of data,
updated every ten seconds, in our example.

Figure 5: Sliding time windows, with 1 minute window size and 30s window period.

Session Windows

A session window function de�nes windows around areas of concentration in the data.
Session windowing is useful for data that is irregularly distributed with respect to time; for
example, a data stream representing user mouse activity may have long periods of idle time
interspersed with high concentrations of clicks. Session windowing groups the high
concentrations of data into separate windows and �lters out the idle sections of the data
stream.

Note that session windowing applies on a per-key basis; that is, grouping into sessions only
takes into account data that has the same key. Each key in your data collection will therefore be
grouped into disjoint windows of differing sizes.

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 7/13

The simplest kind of session windowing speci�es a minimum gap duration. All data arriving
below a minimum threshold of time delay is grouped into the same window. If data arrives after
the minimum speci�ed gap duration time, this initiates the start of a new window.

Figure 5: Session windows, with a minimum gap duration. Note how each data key has
different windows, according to its data distribution.

Single Global Window

By default, all data in a PCollection is assigned to a single global window. If your data set is of
a �xed size, you can leave the global window default for your PCollection. If the elements of
your PCollection all belong to a single global window, your pipeline will execute much like a
batch processing job (as in MapReduce-based processing).

an use a single global window if you are working with an unbounded data set, e.g. from a streaming data sourc

ver, use caution when applying aggregating transforms such as GroupByKey (/data�ow/model/group-by-key)

https://cloud.google.com/dataflow/model/group-by-key

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 8/13

ne (/data�ow/model/combine). A single global window with a default trigger generally requires the entire data

available before processing, which is not possible with continuously updating data.

form aggregations on an unbounded PCollection that uses global windowing, you should specify a non-def

r (/data�ow/model/triggers) for that PCollection. If you attempt to perform an aggregation such as GroupB

unbounded, globally windowed PCollection with default triggering, the Cloud Data�ow service will generate

tion when your pipeline is constructed.

Other Windowing Functions

The Data�ow SDKs provide more windowing functions beyond �xed, sliding, session, and
global windows, such as Calendar-based windows.

See the package com.google.cloud.data�ow.sdk.transforms.windowing
 (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/transforms/windowing/package-
summary)
for a complete list of the available windowing functions in the Data�ow SDK for Java.

Se�ing Your PCollection's Windowing Function

You can set the windowing function for a PCollection by applying the Window transform. When
you apply the Window transform, you must provide a WindowFn. The WindowFn determines the
windowing function your PCollection will use for subsequent grouping transforms, such as a
�xed or sliding time window.

The Data�ow SDKs provide pre-de�ned WindownFns for the basic windowing functions
 (#Functions), or you can de�ne your own WindowFn in advanced cases.

nically, like all transforms, Window takes an input PCollection and outputs a new PCollection wit
element assigned to one or more logical, �nite windows.

Java

https://cloud.google.com/dataflow/model/combine
https://cloud.google.com/dataflow/model/triggers
https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/transforms/windowing/package-summary

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 9/13

setting a windowing function, you may also want to set a trigger for your PCollection. The trigger determine

each individual window is aggregated and emitted, and helps re�ne how the windowing function performs with

ct to late data and computing early results. See Triggers (/data�ow/model/triggers) for more information.

Se�ing Fixed-Time Windows

The following example code shows how to apply Window to divide a PCollection into �xed
windows, each one minute in length:

Se�ing Sliding Time Windows

The following example code shows how to apply Window to divide a PCollection into sliding
time windows. Each window is 30 minutes in length, and a new window begins every �ve
seconds:

Se�ing Session Windows

The following example code shows how to apply Window to divide a PCollection into session
windows, where each session must be separated by a time gap of at least 10 minutes:

Java

 PCollection<String> items = ...;

 PCollection<String> fixed_windowed_items = items.apply(

 Window.<String>into(FixedWindows.of(Duration.standardMinutes(1))));

Java

 PCollection<String> items = ...;

 PCollection<String> sliding_windowed_items = items.apply(

 Window.<String>into(SlidingWindows.of(Duration.standardMinutes(30)).every(Durati

https://cloud.google.com/dataflow/model/triggers

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 10/13

Note that the sessions are per-key—each key in the collection will have its own session
groupings depending on the data distribution.

Se�ing a Single Global Window

If your PCollection is bounded (the size is �xed), you can assign all the elements to a single
global window. The following example code shows how to set a single global window for a
PCollection:

To set a single global window for your PCollection, pass new GlobalWindows() as the WindowFn
when you apply the Window transform. The following example code shows how to apply Window
to assign a PCollection into a single global window:

Time Skew, Data Lag, and Late Data

In any data processing system, there is a certain amount of lag between the time a data event
occurs (the "event time", determined by the timestamp on the data element itself) and the time
the actual data element gets processed at any stage in your pipeline (the "processing time",
determined by the clock on the system processing the element).

erfect system, the event time for each data element and the processing time would be equal, or a
have a consistent delta. However, in any real-world computing system, data generation and deliv

ubject to any number of temporal limitations. In large or distributed systems, such as a distribute

 PCollection<String> items = ...;

 PCollection<String> session_windowed_items = items.apply(

 Window.<String>into(Sessions.withGapDuration(Duration.standardMinutes(10))));

Java

 PCollection<String> items = ...;

 PCollection<String> batch_items = items.apply(

 Window.<String>into(new GlobalWindows()));

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 11/13

ction of web front-ends generating customer orders or log �les, there are no guarantees that data
s will appear in your pipeline in the same order that they were generated in various places on the

For example, let's say we have a PCollection that's using �xed-time windowing, with windows
that are �ve minutes long. For each window, Data�ow must collect all the data with an event
time timestamp in the given window range (between 0:00 and 4:59 in the �rst window, for
instance). Data with timestamps outside that range (data from 5:00 or later) belong to a
different window.

However, data isn't always guaranteed to arrive in a pipeline in correct time order, or to always
arrive at predictable intervals. Data�ow tracks a watermark, which is the system's notion of
when all data in a certain window can be expected to have arrived in the pipeline. Data that
arrives with a timestamp after the watermark is considered late data.

From our example, suppose we have a simple watermark that assumes approximately 30s of
lag time between the data timestamps (the event time) and the time the data appears in the
pipeline (the processing time), then Data�ow would close the �rst window at 5:30. If a data
record arrives at 5:34, but with a timestamp that would put it in the 0:00-4:59 window (say,
3:38), then that record is late data.

For simplicity, we've assumed that we're using a very straightforward watermark that estimates
me/time skew. In practice, your PCollection's data source determines the watermark, and waterm
e more precise or complex.

Managing Time Skew and Late Data

You can allow late data by invoking the .withAllowedLateness operation when you set your
PCollection's windowing strategy. The following code example demonstrates a windowing
strategy that will allow late data up to two days after the end of a window.

Java

 PCollection<String> items = ...;

 PCollection<String> fixed_windowed_items = items.apply(

 Window.<String>into(FixedWindows.of(Duration.standardMinutes(1)))

 .withAllowedLateness(Duration.standardDays(2)));

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 12/13

When you set .withAllowedLateness on a PCollection, that allowed lateness propagates
forward to any subsequent PCollection derived from the �rst PCollection you applied allowed
lateness to. If you want to change the allowed lateness later in your pipeline, you must do so
explicitly by applying Window.withAllowedLateness() again.

You can also use Data�ow's Triggers (/data�ow/model/triggers) API to help you re�ne the
windowing strategy for a PCollection. You can use triggers to determine exactly when each
individual window aggregates and reports its results, including how the window emits late
elements.

Data�ow's default windowing and trigger strategies discard late data. If you want to ensure that
ne handles instances of late data, you'll need to explicitly set .withAllowedLateness when you se
PCollection's windowing strategy and set triggers for your PCollections accordingly.

Adding Timestamps To a PCollection's Elements

You can assign new timestamps to the elements of a PCollection by applying a ParDo
 (/data�ow/model/par-do) transform that outputs new elements with timestamps that you set.
Assigning timestamps can be useful if you want to use Data�ow's windowing features, but
your data set comes from a source without implicit timestamps (such as a �le from TextIO
 (/data�ow/model/text-io)).

This is a good pattern to follow when your data set includes timestamp data, but the
timestamps are not generated by the Data�ow data source. An example might be if your
pipeline reads log records from an input �le, and each log record includes a timestamp �eld;
since your pipeline reads the records in from a �le, the �le source doesn't assign timestamps
automatically. You can parse the timestamp �eld from each record and use a ParDo transform
to attach the timestamps to each element in your PCollection.

To assign timestamps, your ParDo transform needs to use a DoFn that outputs elements using
ProcessContext.outputWithTimestamp (rather than the usual ProcessContext.output used
to emit elements to the main output collection). The following example code shows a ParDo with a
DoFn that outputs elements with new timestamps:

Java

https://cloud.google.com/dataflow/model/triggers
https://cloud.google.com/dataflow/model/par-do
https://cloud.google.com/dataflow/model/text-io

8/23/2020 Windowing | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/model/windowing/ 13/13

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-06-22 UTC.

 PCollection<LogEntry> unstampedLogs = ...;

 PCollection<LogEntry> stampedLogs =

 unstampedLogs.apply(ParDo.of(new DoFn<LogEntry, LogEntry>() {

 public void processElement(ProcessContext c) {

 // Extract the timestamp from log entry we're currently processing.

 Instant logTimeStamp = extractTimeStampFromLogEntry(c.element());

 // Use outputWithTimestamp to emit the log entry with timestamp attached.

 c.outputWithTimestamp(c.element(), logTimeStamp);

 }

 }));

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

