
8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 1/10

ng: Data�ow SDK 1.x for Java is unsupported as of October 16, 2018. After August 12, 2020, Data�ow will not

sing Data�ow 1.x and below. See Migrating from Data�ow SDK 1.x for Java

a�ow/docs/guides/migrate-java-1-to-2) for migration guidance.

ocumentation on this page applies only to the Data�ow SDK 1.x for Java.

ata�ow SDK 2.x for Java and the Data�ow SDK for Python are based on Apache Beam. See the documentation

a�ow/pipelines/creating-a-pipeline-beam) for those SDKs.

Testing your pipeline is a particularly important step in developing an effective data processing
solution. The indirect nature of Cloud Data�ow's model, in which your user code constructs a
pipeline graph to be executed remotely on Google Cloud Platform, can make debugging failed
runs a non-trivial task. Often it is faster and simpler to perform local unit testing on your
pipeline code than to debug a pipeline's remote execution.

Unit testing your pipeline code locally, before performing full runs with the Cloud Data�ow
service, is often the best and most direct way to identify and �x bugs in your pipeline code. Unit
testing your pipeline locally also allows you to use your familiar/favorite local debugging tools.

When testing your code with the Data�ow service, consider limiting the number of worker instances for your pi

r the minimum number appropriate for your test. Limiting the number of worker instances used during repeate

an provide signi�cant time and cost savings.

an limit the number of workers your pipeline uses during test runs by setting the --maxNumWorkers execution

a�ow/pipelines/specifying-exec-params) when you run your test pipeline.

The Data�ow SDKs provide a number of ways to unit test your pipeline code, from the lowest to
the highest levels. From the lowest to the highest level, these are:

You can test the individual function objects, such as DoFn
 (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/transforms/DoFn)s, inside your
pipeline's core transforms.

Testing Your Pipeline

https://cloud.google.com/dataflow/docs/guides/migrate-java-1-to-2
https://cloud.google.com/dataflow/pipelines/creating-a-pipeline-beam
https://cloud.google.com/dataflow/pipelines/specifying-exec-params
https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/transforms/DoFn

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 2/10

You can test an entire Composite Transform (/data�ow/model/composite-transforms) as a
unit.

You can perform an end-to-end test for an entire pipeline.

To support unit testing, the Data�ow SDK for Java provides a number of test classes in the package
com.google.cloud.data�ow.sdk.testing
 (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/testing/package-summary). In
addition, the transforms included in the SDK have unit tests
 (https://github.com/GoogleCloudPlatform/Data�owJavaSDK/tree/master-
1.x/sdk/src/test/java/com/google/cloud/data�ow/sdk/transforms)
, and the example programs in the SDK also contain tests
 (https://github.com/GoogleCloudPlatform/Data�owSDK-examples/tree/master-
1.x/src/test/java/com/google/cloud/data�ow/examples)
. You can use these tests as references and guides.

Testing Individual DoFn Objects

The code in your pipeline's DoFn functions runs often, and often across multiple Compute
Engine instances. Unit-testing your DoFn objects before using them in a Data�ow run can save a
great deal of debugging time and energy.

The Data�ow SDK for Java provides a convenient way to test an individual DoFn called DoFnTester
 (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/transforms/DoFnTester), which is
included in the SDK Transforms package.

DoFnTesteruses the JUnit (http://junit.org) framework. To use DoFnTester, you'll need to do the
following:

1. Create a DoFnTester. You'll need to pass an instance of the DoFn you want to test to the
static factory method for DoFnTester.

2. Create one or more main test inputs of the appropriate type for your DoFn. If your DoFn takes
side inputs and/or produces side outputs, you should also create the side inputs and the side
output tags.

Java

Java

https://cloud.google.com/dataflow/model/composite-transforms
https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/testing/package-summary
https://github.com/GoogleCloudPlatform/DataflowJavaSDK/tree/master-1.x/sdk/src/test/java/com/google/cloud/dataflow/sdk/transforms
https://github.com/GoogleCloudPlatform/DataflowSDK-examples/tree/master-1.x/src/test/java/com/google/cloud/dataflow/examples
https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/transforms/DoFnTester
http://junit.org/

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 3/10

3. Call DoFnTester.processBatch to process the main inputs.

4. Use JUnit's Assert.assertThat method to ensure the test outputs returned from
processBatch match your expected values.

Creating a DoFnTester

To create a DoFnTester, �rst create an instance of the DoFn you want to test. You then use that
instance when you create a DoFnTester using the .of() static factory method:

Creating Test Inputs

You'll need to create one or more test inputs for DoFnTester to send to your DoFn. To create test
inputs, simply create one or more input variables of the same input type that your DoFn accepts. In
the case above:

Side Inputs and Outputs

If your DoFn accepts side inputs, you can create those side inputs by using the method
DoFnTester.setSideInputs.

 static class MyDoFn extends DoFn<String, Integer> { ... }

 MyDoFn myDoFn = ...;

 DoFnTester<String, Integer> fnTester = DoFnTester.of(myDoFn);

 static class MyDoFn extends DoFn<String, Integer> { ... }

 MyDoFn myDoFn = ...;

 DoFnTester<String, Integer> fnTester = DoFnTester.of(myDoFn);

 String testInput = "test1";

 static class MyDoFn extends DoFn<String, Integer> { ... }

 MyDoFn myDoFn = ...;

 DoFnTester<String, Integer> fnTester = DoFnTester.of(myDoFn);

 PCollectionView<List<Integer>> sideInput = ...;

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 4/10

If your DoFn produces side outputs, you'll need to set the appropriate TupleTag objects that you'll
use to access each output. A DoFn with side outputs produces a PCollectionTuple for each side
output; you'll need to provide a TupleTagList that corresponds to each side output in that tuple.

Suppose your DoFn produces side outputs of type String and Integer. You create TupleTag
objects for each, and bundle them into a TupleTagList, then set it for the DoFnTester as follows:

See the ParDo documentation on side inputs (/data�ow/model/par-do#side-inputs) for more
information.

Processing Test Inputs and Checking Results

To process the inputs (and thus run the test on your DoFn), you call the method
DoFnTester.processBatch. When you call processBatch, you pass one or more main test input
values for your DoFn. If you set side inputs, the side inputs are available to each batch of main inputs
that you provide.

DoFnTester.processBatch returns a List of outputs—that is, objects of the same type as the
DoFn's speci�ed output type. For a DoFn<String, Integer>, processBatch returns a
List<Integer>:

 Iterable<Integer> value = ...;

 fnTester.setSideInputInGlobalWindow(sideInput, value);

 static class MyDoFn extends DoFn<String, Integer> { ... }

 MyDoFn myDoFn = ...;

 DoFnTester<String, Integer> fnTester = DoFnTester.of(myDoFn);

 TupleTag<String> tag1 = ...;

 TupleTag<Integer> tag2 = ...;

 TupleTagList tags = TupleTagList.of(tag1).and(tag2);

 fnTester.setSideOutputTags(tags);

 static class MyDoFn extends DoFn<String, Integer> { ... }

 MyDoFn myDoFn = ...;

 DoFnTester<String, Integer> fnTester = DoFnTester.of(myDoFn);

 String testInput = "test1";

 List<Integer> testOutputs = fnTester.processBatch(testInput);

https://cloud.google.com/dataflow/model/par-do#side-inputs

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 5/10

To check the results of processBatch, you use JUnit's Assert.assertThat method to test if the
List of outputs contains the values you expect:

Testing Composite Transforms

To test a composite transform you've created, you can use the following pattern:

Create a TestPipeline.

Create some static, known test input data.

Use the Create transform to create a PCollection of your input data.

Apply your composite transform to the input PCollection and save the resulting output
PCollection.

Use DataflowAssert and its subclasses to verify that the output PCollection contains the
elements that you expect.

Using the SDK Test Classes

TestPipeline (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/testing/TestPipeline)
and Data�owAssert
 (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/testing/Data�owAssert) are
classes included in the Cloud Data�ow Java SDK speci�cally for testing transforms. TestPipeline
and DataflowAssert work with tests con�gured to run both locally or against the remote Cloud
Data�ow service.

 String testInput = "test1";

 List<Integer> testOutputs = fnTester.processBatch(testInput);

 Assert.assertThat(testOutputs, Matchers.hasItems(...));

 // Process a larger batch in a single step.

 Assert.assertThat(fnTester.processBatch("input1", "input2", "input3"), Matchers.ha

Java

https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/testing/TestPipeline
https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/testing/DataflowAssert

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 6/10



TestPipeline

For tests, use TestPipeline in place of Pipeline when you create the pipeline object. Unlike
Pipeline.create, TestPipeline.create handles setting PipelineOptions internally.

You create a TestPipeline as follows:

Data�owAssert

DataflowAssert is an assertion on the contents of a PCollection. You can use DataflowAssert
to verify that a PCollection contains a speci�c set of expected elements.

For a given PCollection, you can use to DataflowAssert to verify the contents as follows:

Any code that uses DataflowAssert must link in JUnit and Hamcrest. If you're using Maven, you
can link in Hamcrest by adding the following dependency to your project's pom.xml �le:

For more information on how these classes work, see the com.google.cloud.data�ow.sdk.testing
 (/data�ow/java-sdk/JavaDoc/com/google/cloud/data�ow/sdk/testing/package-summary)

 Pipeline p = TestPipeline.create();

 PCollection<String> output = ...;

 // Check whether a PCollection contains some elements in any order.

 DataflowAssert.that(output)

 .containsInAnyOrder(

 "elem1",

 "elem3",

 "elem2");

 <dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-all</artifactId>

 <version>1.3</version>

 <scope>test</scope>

 </dependency>

https://cloud.google.com/dataflow/java-sdk/JavaDoc/com/google/cloud/dataflow/sdk/testing/package-summary

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 7/10

package documentation.

Using the Create Transform

You can use the Create transform to create a PCollection out of a standard in-memory
collection class, such as Java List. See Creating a PCollection
 (/data�ow/model/pcollection#Creating) for more information.

An Example Test for a Composite Transform

The following code shows a complete test for a composite transform. The test applies the Count
transform to an input PCollection of String elements. The test uses the Create transform to
create the input PCollection from a Java List<String>.

Java

 @RunWith(JUnit4.class)

 public class CountTest {

 // Our static input data, which will make up the initial PCollection.

 static final String[] WORDS_ARRAY = new String[] {

 "hi", "there", "hi", "hi", "sue", "bob",

 "hi", "sue", "", "", "ZOW", "bob", ""};

 static final List<String> WORDS = Arrays.asList(WORDS_ARRAY);

 @Test

 public void testCount() {

 // Create a test pipeline.

 Pipeline p = TestPipeline.create();

 // Create an input PCollection.

 PCollection<String> input = p.apply(Create.of(WORDS)).setCoder(StringUtf8Coder

 // Apply the Count transform under test.

 PCollection<KV<String, Long>> output =

 input.apply(Count.<String>perElement());

 // Assert on the results.

 DataflowAssert.that(output)

https://cloud.google.com/dataflow/model/pcollection#Creating

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 8/10

Testing a Pipeline End-to-End

You can use the test classes in the Data�ow SDKs (such as TestPipeline and DataflowAssert
in the Data�ow SDK for Java) to test an entire pipeline end-to-end. Typically, to test an entire
pipeline, you do the following:

For every source of input data to your pipeline, create some known static test input data.

Create some static test output data that matches what you expect in your pipeline's �nal
output PCollection(s).

Create a TestPipeline in place of the standard Pipeline.create.

In place of your pipeline's Read transform(s), use the Create transform to create one or
more PCollections from your static input data.

Apply your pipeline's transforms.

In place of your pipeline's Write transform(s), use DataflowAssert to verify that the
contents of the �nal PCollections your pipeline produces match the expected values in
your static output data.

Testing the WordCount Pipeline

 .containsInAnyOrder(

 KV.of("hi", 4L),

 KV.of("there", 1L),

 KV.of("sue", 2L),

 KV.of("bob", 2L),

 KV.of("", 3L),

 KV.of("ZOW", 1L));

 // Run the pipeline.

 p.run();

 }

Java

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 9/10

The following example code shows how one might test the WordCount example pipeline
 (/data�ow/examples/wordcount-example). WordCount usually reads lines from a text �le for input
data; instead, the test creates a Java List<String> containing some text lines and uses a Create
transform to create an initial PCollection.

WordCount's �nal transform (from the composite transform CountWords) produces a
PCollection<String> of formatted word counts suitable for printing. Rather than write that
PCollection to an output text �le, our test pipeline uses DataflowAssert to verify that the
elements of the PCollection match those of a static String array containing our expected output
data.

 @RunWith(JUnit4.class)

 public class WordCountTest {

 // Our static input data, which will comprise the initial PCollection.

 static final String[] WORDS_ARRAY = new String[] {

 "hi there", "hi", "hi sue bob",

 "hi sue", "", "bob hi"};

 static final List<String> WORDS = Arrays.asList(WORDS_ARRAY);

 // Our static output data, which is the expected data that the final PCollection

 static final String[] COUNTS_ARRAY = new String[] {

 "hi: 5", "there: 1", "sue: 2", "bob: 2"};

 // Example test that tests the pipeline's transforms.

 @Test

 @Category(com.google.cloud.dataflow.sdk.testing.RunnableOnService.class)

 public void testCountWords() throws Exception {

 Pipeline p = TestPipeline.create();

 // Create a PCollection from the WORDS static input data.

 PCollection<String> input = p.apply(Create.of(WORDS)).setCoder(StringUtf8Coder

 // Run ALL the pipeline's transforms (in this case, the CountWords composite t

 PCollection<String> output = input.apply(new CountWords());

 // Assert that the output PCollection matches the COUNTS_ARRAY known static ou

 DataflowAssert.that(output).containsInAnyOrder(COUNTS_ARRAY);

 // Run the pipeline.

 p.run();

 }

 }

https://cloud.google.com/dataflow/examples/wordcount-example

8/23/2020 Testing Your Pipeline | Cloud Dataflow | Google Cloud

https://cloud.google.com/dataflow/pipelines/testing-your-pipeline/ 10/10

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2020-06-22 UTC.

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

