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Note: This page describes system behavior for Datastore databases that have not yet upgraded to Firestore

in Datastore mode.

Firestore (/�restore/) is the new version of Datastore and removes several Datastore limitations

 (/datastore/docs/�restore-or-datastore#in_datastore_mode).

This document discusses achieving strong consistency for a positive user experience, while
embracing Datastore’s eventual consistency model for handling large quantities of data and
users.

This document is intended for software architects and engineers wanting to build solutions on
Datastore. To help readers who are more familiar with relational databases than non-relational
systems like Datastore, this document points out analogous concepts in relational databases.
The document assumes that you have a basic familiarity with Datastore. The easiest way to
get started with Datastore is in Google App Engine using one of the supported languages
 (/datastore/docs/reference/libraries). If you have not yet used App Engine, we suggest you �rst
read the Getting Started Guide (/appengine/) and the Storing Data
 (/appengine/docs/python/storage) section for one of those languages. Though Python is used for
example code fragments, no Python expertise is required in order to follow along with this
document.

Note: The code snippets in this article use the Python DB Client Library for Datastore, which is
no longer recommended. Developers building new applications are strongly encouraged to use
the NDB Client Library (/appengine/docs/standard/python/ndb), which has several bene�ts
compared to this client library, such as automatic entity caching via the Memcache API. If you
are currently using the older DB Client Library, read the DB to NDB Migration Guide
 (/appengine/docs/standard/python/ndb/db_to_ndb)

https://cloud.google.com/firestore/
https://cloud.google.com/datastore/docs/firestore-or-datastore#in_datastore_mode
https://cloud.google.com/datastore/docs/reference/libraries
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/docs/python/storage
https://cloud.google.com/appengine/docs/standard/python/ndb
https://cloud.google.com/appengine/docs/standard/python/ndb/db_to_ndb
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Non-relational databases, also known as NoSQL databases, have emerged in recent years as
an alternative to relational databases. Datastore is one of the most widely used non-relational
databases in the industry. In 2013 Datastore processed 4.5 trillion transactions per month
(Google Cloud Platform blog post
 (http://googlecloudplatform.blogspot.com/2013/05/reducing-app-engine-datastore-pricing-by-up-to-25-
percent.html)

). It provides a simpli�ed way for developers to store and access data. The �exible schema
maps naturally to object-oriented and scripting languages. Datastore also provides a number of
features that relational databases are not optimally suited to provide, including high-
performance at a very large scale and high-reliability.

To developers more accustomed to relational databases, it may be challenging to design a
system that leverages non-relational databases, as some characteristics and practices of non-
relational databases may be relatively unfamiliar to them. Although the Datastore
programming model is simple, it is important to be aware of these characteristics. Eventual
consistency is one of these characteristics and programming for eventual consistency is the
main subject of this document.

Eventual consistency is a theoretical guarantee that, provided no new updates to an entity are
made, all reads of the entity will eventually return the last updated value. The Internet Domain
Name System (DNS) is a well-known example of a system with an eventual consistency model.
DNS servers do not necessarily re�ect the latest values but, rather, the values are cached and

http://googlecloudplatform.blogspot.com/2013/05/reducing-app-engine-datastore-pricing-by-up-to-25-percent.html
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replicated across many directories over the Internet. It takes a certain amount of time to
replicate modi�ed values to all DNS clients and servers. However, the DNS system is a very
successful system that has become one of the foundations of the Internet. It is highly available
and has proven to be extremely scalable, enabling name lookups to over a hundred million
devices across the entire Internet.

Figure 1 illustrates the concept of replication with eventual consistency. The diagram illustrates
that although replicas are always available to read, some replicas may be inconsistent with the
latest write on the originating node, at a particular moment in time. In the diagram, Node A is
the originating node and nodes B and C are the replicas.

Figure 1: Conceptual Depiction of Replication with Eventual Consistency

In contrast, traditional relational databases have been designed based on the concept of strong
consistency, also called immediate consistency. This means that data viewed immediately after
an update will be consistent for all observers of the entity. This characteristic has been a
fundamental assumption for many developers who use relational databases. However, to have
strong consistency, developers must compromise on the scalability and performance of their
application. Simply put, data has to be locked during the period of update or replication process
to ensure that no other processes are updating the same data.

A conceptual view of the deployment topology and replication process with strong consistency
is shown in Figure 2. In this diagram, you can see how replicas always have values consistent
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with the originating node, but are not accessible until the update �nishes.

Figure 2: Conceptual Depiction of Replication with Strong Consistency

Non-relational databases have become popular recently, especially for web applications that
require high-scalability and performance with high-availability. Non-relational databases let
developers choose an optimal balance between strong consistency and eventual consistency
for each application. This allows developers to combine the bene�ts of both worlds. For
example, information such as “knowing who in your buddy list is online at given time” or
“knowing how many users have +1’d your post” are use cases where strong consistency is not
required. Scalability and performance can be provided for these use cases by leveraging
eventual consistency. Use cases which require strong consistency include information such as
“whether or not a user �nished the billing process” or “the number of points a game player
earned during a battle session”.

To generalize the examples just given, use cases with very large numbers of entities often
suggest that eventual consistency is the best model. If there are a very large number of results
in a query, then the user experience may not be affected by the inclusion or exclusion of speci�c



1/25/2020 Balancing Strong and Eventual Consistency with Datastore

https://cloud.google.com/datastore/docs/articles/balancing-strong-and-eventual-consistency-with-google-cloud-datastore/ 5/19

entities. On the other hand, use cases with a small number of entities and a narrow context
suggest that strong consistency is required. The user experience will be affected because the
context will make users aware of which entities should be included or excluded.

For these reasons, it is important for developers to understand the non-relational characteristics
of Datastore. The following sections discuss how eventual consistency and strong consistency
models can be combined to build a scalable, highly available, and highly performing
application. In doing so, consistency requirements for a positive user experience will still be
satis�ed.

The correct API must be selected when a strongly consistent view of data is required. The
different varieties of Datastore query APIs and their corresponding consistency models are
shown in Table 1.

 (#) (#)

Datastore API
Read of entity
value

Read of index

Global Query (/appengine/docs/python/datastore/queries) Eventual
consistency

Eventual
consistency

Keys-only Global Query
 (/appengine/docs/python/datastore/queries#keys-only_queries)

N/A Eventual
consistency

Ancestor Query
 (/appengine/docs/python/datastore/queries#ancestor_queries)

Strong
consistency

Strong
consistency

Lookup by key
 (/appengine/docs/python/datastore/entities#Python_Retrieving_an_entity)
(get())

Strong
consistency

N/A

Table 1: Datastore queries/get calls and possible consistency behaviors

Datastore queries without an ancestor are known as global queries and are designed to work
with an eventual consistency model. This does not guarantee strong consistency. A keys-only
global query is a global query that returns only the keys of entities matching the query, not the

https://cloud.google.com/appengine/docs/python/datastore/queries
https://cloud.google.com/appengine/docs/python/datastore/queries#keys-only_queries
https://cloud.google.com/appengine/docs/python/datastore/queries#ancestor_queries
https://cloud.google.com/appengine/docs/python/datastore/entities#Python_Retrieving_an_entity
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attribute values of the entities. An ancestor query scopes the query based on an ancestor entity.
The following sections cover each consistency behavior in more detail.

With the exception of ancestor queries, an updated entity value may not be immediately visible
when executing a query. To understand the impact of eventual consistency when reading entity
values, consider a scenario where an entity, Player, has a property, Score. Consider, for example,
that the initial Score has a value of 100. After some time, the Score value is updated to 200. If a
global query is executed and includes the same Player entity in the result, it is possible that the
value of the property Score of the returned entity might appear unchanged, at 100.

This behavior is caused by the replication between Datastore servers. Replication is managed
by Cloud Bigtable and Megastore, the underlying technologies for Datastore (see Additional
Resources (#h.ywh7cedcuhkk) for more on details Bigtable and Megastore). The replication is
executed with the Paxos (http://en.wikipedia.org/wiki/Paxos_(computer_science)) algorithm, which
synchronously waits until a majority of the replicas have acknowledged the update request.
The replica is updated with data from the request after a period of time. This time period is
usually small, but there is no guarantee on its actual length. A query may read the stale data if
it is executed before the update �nishes.

In many cases, the update will have reached all the replicas very quickly. However, there are
several factors that may, when compounded together, increase the time to achieve consistency.
These factors include any datacenter-wide incidents that involve switching over a large number
of servers between datacenters. Given the variation of these factors, it is impossible to provide
any de�nitive time requirements for establishing full consistency.

The time required for a query to return the latest value is usually very short. However, in rare
situations when the replication latency increases, the time can be much longer. Applications
that use Datastore global queries should be carefully designed to handle these cases
gracefully.

The eventual consistency on reading entity values can be avoided by using a keys-only query,
an ancestor query, or lookup by key (the get() method). We will discuss these different types of
queries in more depth below.

http://en.wikipedia.org/wiki/Paxos_(computer_science)
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An index may not yet be updated when a global query is executed. This means that, even
though you may able to read the latest property values of the entities, the “list of entities”
included in the query result may be �ltered based on old index values.

To understand the impact of eventual consistency on reading an index, imagine a scenario
where a new entity, Player, is inserted into Datastore. The entity has a property, Score, which has
an initial value of 300. Immediately after the insertion, you execute a keys-only query to fetch all
entities with a Score value greater than 0. You would then expect the Player entity, just recently
inserted, to appear in the query results. Perhaps unexpectedly, instead, you may �nd that the
Player entity does not appear in the results. This situation can occur when the index table for
the Score property is not updated with the newly inserted value at the time of the query
execution.

Remember that all the queries in Datastore are executed against index tables
 (/appengine/docs/python/datastore/indexes#Python_Index_de�nition_and_structure), and yet the
updates to the index tables are asynchronous (/appengine/articles/life_of_write). Every entity
update is, essentially, made up of two phases. In the �rst phase, the commit phase, a write to
the transaction log is performed. In the second phase, data is written and indexes are updated.
If the commit phase succeeds, then the write phase is guaranteed to succeed, though it might
not happen immediately. If you query an entity before the indexes are updated, you may end up
viewing data that is not yet consistent.

As a result of this two phase process, there is a time delay before the latest updates to entities
are visible in global queries. Just as with entity value eventual consistency, the time delay is
typically small, but may be longer (even minutes or more in exceptional circumstances).

The same thing can happen after updates as well. For example, suppose you update an
existing entity, Player, with a new Score property value of 0, and executed the same query
immediately afterwards. You would expect the entity not to appear in the query results because
the new Score value of 0 would exclude it. However, due to the same asynchronous index
update behavior, it is still possible for the entity to be included in the result.

The eventual consistency on reading an index can be only be avoided by using an ancestor
query or lookup by key method. A keys-only query can not avoid this behavior.

In Datastore, there are only two APIs that provide a strongly consistent view for reading entity
values and indexes: (1) the lookup by key method and (2) the ancestor query. If application

https://cloud.google.com/appengine/docs/python/datastore/indexes#Python_Index_definition_and_structure
https://cloud.google.com/appengine/articles/life_of_write
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logic requires strong consistency, then the developer should use one of these methods to read
entities from Datastore.

Datastore is speci�cally designed to provide strong consistency on these APIs. When calling
either one of them, Datastore will �ush all pending updates on one of the replicas and index
tables, then execute the lookup or ancestor query. Thus, the latest entity value, based on the
updated index table, will always be returned with values based on the latest updates.

The lookup by key call, in contrast to queries, only returns one entity or a set of entities speci�ed
by a key or a set of keys. This means that an ancestor query is the only way in Datastore to
satisfy strong consistency requirement together with a �ltering requirement. However, ancestor
queries do not work without specifying an entity group.

As discussed at the beginning of this document, one of the bene�ts of Datastore is that
developers can �nd an optimal balance between strong consistency and eventual consistency.
In Datastore, an entity group (/appengine/docs/python/datastore/structuring_for_strong_consistency)

is a unit with strong consistency, transactionality, and locality. By utilizing entity groups,
developers can de�ne the scope of strong consistency among the entities in an application. In
this way, the application can maintain consistency inside the entity group while, at the same
time, achieving high scalability, availability, and performance as a complete system.

An entity group is a hierarchy formed by a root entity and its children or successors.
To create an entity group, a developer speci�es an ancestor path, which is, essentially, a series
of parent keys pre�xing the child key. The concept of entity group is illustrated in Figure 3. In
this case, the root entity with the key “ateam” has two children with the keys “ateam/098745”
and “ateam/098746”.

[1] (#ftnt1)

https://cloud.google.com/appengine/docs/python/datastore/structuring_for_strong_consistency
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Figure 3: Schematic View of Entity Group Concept

Inside the entity group, the following characteristics are guaranteed:

Strong Consistency

An ancestor query on the entity group will return a strongly consistent result. In this
way, it re�ects the latest entity values �ltered by the latest index state.

Transactionality

By demarcating a transaction programmatically, the entity group provides ACID
(atomicity, consistency, isolation, and durability) characteristics in the transaction.

Locality

Entities in an entity group will be stored at physically close places on Datastore
servers, because all the entities are sorted and stored by the lexicographical order of
the keys. This enables an ancestor query to rapidly scan the entity group with
minimal I/O.

An ancestor query is a special form of query that only executes against a speci�ed entity group.
It executes with strong consistency. Behind the scenes, Datastore assures that all the pending
replications and index updates are applied before executing the query.
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This section describes how to use entity groups and ancestor queries in practice. In the
following example, we consider the problem of managing data records for people. Suppose we
have code that adds an entity of a speci�c kind followed immediately by a query on that kind.
This concept is demonstrated by the example Python code below.

The problem with this code is that, in most cases, the query will not return the entity added in
the statement above it. Since the query follows in the line following immediately after the insert,
the index will not be updated when the query is executed. However, there is also a problem with
validity of this use case: is there really a need to return a list of all people in one page with no
context? What if there are a million people? The page would take too long to return.

The nature of the use case suggests that we should provide some context to narrow the query.
In this example, the context that we will use will be the organization. If we do that, then we can
use the organization as an entity group and execute an ancestor query, which solves our
consistency problem. This is demonstrated with the Python code below.
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This time, with the ancestor org speci�ed in the GqlQuery, the query returns the entity just
inserted. The example could be extended to drill down on an individual person by querying the
person’s name with the ancestor as part of the query. Alternatively, this could have also been
done by saving the entity key and then using it to drill down with a lookup by key.

Entity groups can also be used as a unit for maintaining consistency between Memcache
entries and Datastore entities. For example, consider a scenario where you count the number of
Persons in each team and store them in Memcache. To make sure the cached data is
consistent with the latest values in Datastore, you can use entity group metadata
 (/appengine/docs/python/datastore/metadataqueries#Python_Entity_group_metadata). The metadata
returns the latest version number of speci�ed entity group. You can compare the version
number with the number stored in Memcache. Using this method you can detect a change in
any of the entities in the entire entity group by reading from one set of metadata, instead of
scanning all the individual entities in the group.

The approach of using entity groups and ancestor queries is not a silver bullet. There are two
challenges in practice that make it hard to apply the technique in general, as listed below.

1. There is a limit of one update per second write for each entity group.

2. The entity group relationship can not be changed after entity creation.

https://cloud.google.com/appengine/docs/python/datastore/metadataqueries#Python_Entity_group_metadata
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An important challenge is that the system must be designed to contain the number of updates
(or transactions) in each entity group. The supported limit is one update per second per entity
group.  If the number of updates needs to exceed that limit then the entity group may
be a performance bottleneck.

In the example above, each organization may need to update the record of any person in the
organization. Consider a scenario where there are 1,000 people in the “ateam” and each person
may have one update per second on any of the properties. As a result, there may be up to 1,000
updates per second in the entity group, a result which would not be achievable because of the
update limit. This illustrates that it is important to choose an appropriate entity group design
that considers performance requirements. This is one of the challenges of �nding the optimal
balance between eventual consistency and strong consistency.

A second challenge is the immutability of entity group relationships. The entity group
relationship is formed statically based on key naming. It cannot be changed after creating the
entity. The only available option for changing the relationship is to delete the entities in an
entity group and recreate them again. This challenge prevents us from using entity groups to
de�ne ad-hoc scopes for consistency or transactionality dynamically. Instead, the consistency
and transactionality scope are closely tied with the static entity group de�ned at design time.

For example, consider a scenario where you wish to implement a wire transfer between two
bank accounts. This business scenario requires strong consistency and transactionality.
However, the two accounts can not be grouped into one entity group last-minute or be based on
a global parent. That entity group would create a bottleneck for the entire system that would
hinder other wire transfer requests from being executed. So entity groups cannot be used in this
way.

There is an alternative way to implement a wire transfer in a highly scalable and available way.
Instead of placing all accounts in a single entity group, you can create an entity group for each
account. By doing so, you can use transactions (/datastore/docs/concepts/transactions) to ensure
ACID updates to both bank accounts. Transactions are a Datastore feature that allows you to
create sets of operations with ACID characteristics for up to twenty-�ve entity groups. Note that
within a transaction, you must use strongly consistent queries such as lookups by key and

[2] (#ftnt2)

https://cloud.google.com/datastore/docs/concepts/transactions
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ancestor queries. For more on the restrictions of transactions, see Transactions and entity
groups (/datastore/docs/concepts/transactions#transactions_and_entity_groups).

If you already have an existing application with a large number of entities stored in Datastore, it
may be di�cult to incorporate entity groups afterwards in a refactoring exercise. It would
require deleting all the entities and adding them within an entity group relationship. So, in data
modeling for Datastore, it is important to make a decision on the entity group design in the
early phase of the application design. Otherwise, you may be limited in refactoring to other
alternatives to achieve a certain level of consistency, such as a keys-only query followed by a
lookup-by-key, or by using Memcache.

A keys-only global query is a special type of global query that returns only keys without the
property values of the entities. Since the return values are only keys, the query does not involve
an entity value with a possible consistency problem. A combination of the keys-only, global
query with a lookup method will read the latest entity values. But it should be noted that a keys-
only global query can not exclude the possibility of an index not yet being consistent at the time
of the query, which may result in an entity not being retrieved at all. The result of the query
could potentially be generated based on �ltering out old index values. In summary, a developer
may use a keys-only global query followed by lookup by key only when an application
requirement allows the index value not yet being consistent at the time of a query.

The Memcache service is volatile, but strongly consistent. So, by combining Memcache
lookups and Datastore queries, it is possible to build a system that will minimize consistency
issues most of the time.

For example, consider the scenario of a game application that maintains a list of Player
entities, each with a score greater than zero.

For insert or update requests, apply them to the list of Player entities in Memcache as well
as Datastore.

https://cloud.google.com/datastore/docs/concepts/transactions#transactions_and_entity_groups
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For query requests, read the list of Player entities from Memcache and execute a keys-
only query on Datastore when the list is not present in Memcache.

The returned list will be consistent whenever the cached list is present in Memcache. If the entry
has been evicted, or the Memcache service is not available temporarily, the system may need to
read the value from a Datastore query that could possibly return an inconsistent result. This
technique can be applied to any application that tolerates a small amount of inconsistency.

There are some best practices when using Memcache as a caching layer for Datastore:

Catch Memcache exceptions and errors to maintain the consistency between the
Memcache value and the Datastore value. If you receive an exception when updating the
entry on Memcache, make sure to invalidate the old entry in Memcache. Otherwise there
may be different values for an entity (an old value in Memcache and a new value in
Datastore).

Set an expiration period
 (/appengine/docs/python/memcache/#Python_How_cached_data_expires) on the Memcache
entries. It is recommended to set short time periods for the expiration of each entry to
minimize the possibility of inconsistency in the case of Memcache exceptions.

Use the compare-and-set
 (/appengine/docs/python/memcache/#Python_Using_compare_and_set_in_Python) feature when
updating the entries for concurrency control. This will help ensure that simultaneous
updates on the same entry will not interfere with each other.

The suggestions made in the previous section only lessen the possibility of inconsistent
behavior. It is best to design the application based on entity groups and ancestor queries when
strong consistency is required. However, it may not be feasible to migrate an existing
application, which may include changing an existing data model and application logic from
global queries to ancestor queries. One way to achieve this is by having a gradual transition
process, such as the following:

1. Identify and prioritize the functions in the application that require strong consistency.

2. Write new logic for insert() or update() functions using entity groups in addition to (rather
than replacing) existing logic. In this way, any new inserts or updates on both new entity
groups and old entities can be handled by an appropriate function.

https://cloud.google.com/appengine/docs/python/memcache/#Python_How_cached_data_expires
https://cloud.google.com/appengine/docs/python/memcache/#Python_Using_compare_and_set_in_Python
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3. Modify the existing logic for read or query functions ancestor queries are executed �rst if
a new entity group exists for the request. Execute the old global query as fallback logic if
the entity group does not exist.

This strategy allows for a gradual migration from an existing data model to a new data model
based on entity groups that minimizes the risk of issues caused by eventual consistency. In
practice, this approach is dependent on speci�c use cases and requirements for its application
to an actual system.

At present, it is di�cult to detect a situation programmatically when an application has
deteriorated consistency. However, if you do happen to determine through other means that an
application has deteriorated consistency, then it may be possible to implement a degraded
mode that could be turned on or off to disable some areas of application logic that require
strong consistency. For example, rather than showing an inconsistent query result on a billing
report screen, a maintenance message for that particular screen could be shown instead. In this
way, the other services in the application can continue serving, and in turn, reduce the impact to
the user experience.

In a large application with millions of users or terabytes of Datastore entities, it is possible for
inappropriate usage of Datastore to lead to deteriorated consistency. Such practices include:

Sequential numbering in entity keys

Too many indexes

These practices do not affect small applications. However, once the application grows very
large, these practices increase the possibility of longer times needed for consistency. So it is
best to avoid them at the early stages of application design.

Before the release of App Engine SDK 1.8.1, Datastore used a sequence of small integer IDs
with generally consecutive patterns as the default auto-generated key names. In some
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documents this is referred to as a “legacy policy” for creating any entities that have no
application speci�ed key name. This legacy policy generated entity key names with sequential
numbering, such as 1000, 1001, 1002, for example. However, as we have discussed earlier,
Datastore stores entities by the lexicographical order of the key names, so that those entities
will be are very likely stored on the same Datastore servers. If an application attracts really large
tra�c, this sequential numbering could cause a concentration of operations on a speci�c
server, which may result in longer latency for consistency.

In App Engine SDK 1.8.1, Datastore introduced a new ID numbering method with a default
policy that uses scattered ID’s (see reference
 (/appengine/docs/python/datastore/entities#Python_Assigning_identi�ers) documentation). This
default policy generates a random sequence of ID’s up to 16 digits long that are approximately
uniformly distributed. Using this policy, it is likely that the tra�c of the large application will be
better distributed among a set of Datastore servers with reduced time for consistency. The
default policy is recommended unless your application speci�cally requires compatibility with
the legacy policy.

If you do explicitly set key names on entities, the naming scheme should be designed to access
the entities evenly over the whole key name space. In other words, do not concentrate access in
a particular range as they are ordered by the lexicographical order of key names. Otherwise, the
same issue as with the sequential numbering may arise.

To understand uneven distribution of access over the keyspace, consider an example where
entities are created with the sequential key names as shown in the following code:

The application access pattern may create a “hot spot” over a certain range of the key names,
such as having concentrated access on recently created Person entities. In this case, the
frequently accessed keys will all have higher ID’s. The load may then be concentrated on a
speci�c Datastore server.

Alternatively, to understand even distribution over the keyspace, consider using long random
strings for key names. This is illustrated in the following example:

https://cloud.google.com/appengine/docs/python/datastore/entities#Python_Assigning_identifiers
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Now the recently created Person entities will be scattered over the keyspace and on multiple
servers. This assumes that there is a su�ciently large number of Person entities.

In Datastore, one update on an entity will lead to update on all indexes de�ned for that entity
kind (see Life of a Datastore Write (/appengine/articles/life_of_write) for details). If an application
uses many custom indexes, one update could involve tens, hundreds, or even thousands of
updates on index tables. In a large application, an excessive use of custom indexes could result
in increased load on the server and may increase the latency to achieve consistency.

In most cases, custom indexes are added to support requirements such as customer support,
troubleshooting, or data analysis tasks. BigQuery (/bigquery/) is a massively scalable query
engine capable of executing ad-hoc queries on large datasets without pre-built indexes. It is
better suited for use cases such as customer support, troubleshooting, or data analysis that
require complex queries than Datastore.

One practice is to combine Datastore and BigQuery to ful�ll different business requirements.
Use Datastore for online transactional processing (OLTP) required for core application logic and
use BigQuery for online analytical processing (OLAP) for backend operations. It may be
necessary to implement a continuous data export �ow from Datastore to BigQuery to move the
data necessary for those queries.

Besides an alternate implementation for custom indexes, another recommendation is to specify
unindexed properties explicitly (see Properties and value types
 (/datastore/docs/concepts/entities#properties_and_value_types)). By default, Datastore will create a
different index table for each indexable property of an entity kind. If you have 100 properties on
a kind, there will be 100 index tables for that kind, and an additional 100 updates on each
update to an entity. A best practice, then, is to set properties unindexed where possible, if they
are not needed for a query condition.

https://cloud.google.com/appengine/articles/life_of_write
https://cloud.google.com/bigquery/
https://cloud.google.com/datastore/docs/concepts/entities#properties_and_value_types
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Besides reducing the possibility of having increases times for consistency, these index
optimizations may result in quite a large reduction of Datastore storage costs
 (/datastore/docs/concepts/storage-size) in a large application which heavily uses indexes.

Eventual consistency is an essential element of non-relational databases that allows
developers to �nd an optimal balance between scalability, performance, and consistency. It is
important to understand how to handle the balance between eventual and strong consistency
to design an optimal data model for your application. In Datastore, the use of entity groups and
ancestor queries is the best way to guarantee strong consistency over a scope of entities. If
your application cannot incorporate entity groups because of the limitations described earlier,
you may consider other options such as using keys-only queries or Memcache. For large
applications, apply best practices such as the use of scattered IDs and reduced indexing to
decrease the time required for consistency. It may also be important to combine Datastore with
BigQuery to ful�ll business requirements for complex queries and to reduce the usage of
Datastore indexes as far as possible.

The following resources provide more information about the topics discussed in this document:

Google App Engine: Storing Data (/appengine/docs/python/datastore/)

Datastore Overview (/datastore/docs/concepts/overview)

Google Cloud Platform Blog (http://googlecloudplatform.blogspot.com/)

Cloud SQL (/sql/)

Using Python App Engine with Cloud SQL (/appengine/training/cloud-sql/)

Bigtable: A Distributed Storage System for Structured Data
 (http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/
archive/bigtable-osdi06.pdf)

App Engine 1.5.2 SDK Released
 (http://googleappengine.blogspot.com/2011/07/app-engine-152-sdk-released.html)

https://cloud.google.com/datastore/docs/concepts/storage-size
https://cloud.google.com/appengine/docs/python/datastore/
https://cloud.google.com/datastore/docs/concepts/overview
http://googlecloudplatform.blogspot.com/
https://cloud.google.com/sql/
https://cloud.google.com/appengine/training/cloud-sql/
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/bigtable-osdi06.pdf
http://googleappengine.blogspot.com/2011/07/app-engine-152-sdk-released.html
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Megastore: Providing Scalable, Highly Available Storage for Interactive Services
 (http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf)

[1] (#ftnt_ref1) An entity group can even be formed by specifying only one key of the root or
parent entity, without storing the actual entities for the root or parent, because the entity group
functions are all implemented based on relationships between keys.

[2] (#ftnt_ref2) The supported limit is one update per second per entity group outside
transactions, or one transaction per second per entity group. If you aggregate multiple updates
into one transaction, then you are limited to a maximum transaction size of 10 MB and the
maximum write rate of Datastore server.

http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

