
8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 1/13

Alpha

This library is covered by the Pre-GA Offerings Terms of the Google Cloud Platform Terms of Service. Pre-GA

libraries may have limited support, and changes to pre-GA libraries may not be compatible with other pre-GA

versions. For more information, see the launch stage descriptions.

Overview

This page describes how to con�gure your environment and your Python application to use
Cloud Debugger. For some environments, you must explicitly specify the access scope to let the
Cloud Debugger agent send data. We recommend setting the broadest possible access scope
and then using Identity and Access Management (/iam/docs/overview) to restrict access. In
keeping with this best practice, set the access scope to be all Cloud APIs with the option cloud-
platform.

Language versions and compute environments

Cloud Debugger is available for Python 3 on the following compute environments:

Se�ing up Cloud Debugger

To set up Cloud Debugger, complete the following tasks:

1. Verify the Cloud Debugger API is enabled for your project.

App Engine Standard environment
 (/debugger/docs/setup/python#gae-
standard)

App Engine Flexible environment
 (/debugger/docs/setup/python#gae-
�ex)

Compute Engine
 (/debugger/docs/setup/python

  

Se�ing Up Cloud Debugger for Python

https://cloud.google.com/terms/service-terms#1
https://cloud.google.com/products#product-launch-stages
https://cloud.google.com/iam/docs/overview

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 2/13

2. Install and con�gure the Debugger on the compute environment you're using.

3. Select your source code.

Verifying the Cloud Debugger API is enabled

To begin using Cloud Debugger, ensure that the Cloud Debugger API is enabled. Cloud
Debugger is enabled by default for most projects.

Enable Cloud Debugger API (https://console.cloud.google.com/apis/api/clouddebugger.googleapis.com/ov

Cloud Debugger is free to use. However, you need a Google Cloud project

ource-manager/docs/creating-managing-projects) with billing enabled before you can use Cloud Debugger.

Canary snapshots and logpoints

The Debugger agent for Python can use canary snapshots and logpoints every time you set a
snapshot or logpoint.

The Debugger agent canaries snapshots and logpoints to protect large jobs from any potential
bug in the Debugger agent which can take the entire job down when a snapshot or a logpoint is
applied.

To mitigate this, Debugger canaries snapshots and logpoints on a subset of your running
instances each time they are set. After Debugger veri�es the snapshot or logpoint does not
adversely affect your running instances, Debugger then applies the snapshot or logpoint to all
instances.

Canarying is available for the Python Debugger agent version 2.15 and later.

To learn how to use Debugger in canary mode, go to the the Debug snapshots
 (/debugger/docs/using/snapshots) and Debug logpoints (/debugger/docs/using/logpoints) pages.

Enabling canary snapshots and logpoints

https://console.cloud.google.com/apis/api/clouddebugger.googleapis.com/overview
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/debugger/docs/using/snapshots
https://cloud.google.com/debugger/docs/using/logpoints

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 3/13

When you install the latest version of the Debugger agent, you have the option to enable or
disable canarying. Canarying is disabled by default.

When to enable canary snapshots and logpoints

To protect deployment and production-critical workloads, enable canarying when debugging
these workloads.

If you have a single instance, you can still debug with canarying enabled, but your single
instance runs without canarying the snapshot or logpoint.

When not to enable canary snapshots and logpoints

Don't enable canarying on workloads that have an execution time of less than 40 seconds, for
instance, jobs using Cloud Functions.

Don't enable canarying if you want a faster snapshot-triggering cycle.

To con�gure the Debugger agent to not canary snapshots and logpoints, go to the installation
instructions for the Google Cloud platform you're using.

App Engine standard environment

Python 3.7 or Python 3.8

If you are using Python 3.7 or Python 3.8, you must manually enable the Debugger agent by
performing the following steps:

1. Make sure your app.yaml
 (/appengine/docs/standard/python3/con�guring-your-app-with-app-yaml) �le contains the
following lines:

runtime: python37

or

runtime: python38

https://cloud.google.com/appengine/docs/standard/python3/configuring-your-app-with-app-yaml

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 4/13

2. Add the following lines as early as possible in your initialization code, such as in your
main function, or in manage.py when using the Django web framework (version 1.* only).

To debug with canarying enabled:

To debug with canarying not enabled, set the breakpoint_enable_canary parameter to
False:

3. Add google-python-cloud-debugger to requirements.txt.

4. To have the Debug page in the Cloud Console automatically display source code
matching the deployed app, go to Selecting source code automatically
 (/debugger/docs/source-context).

The Debugger is now ready for use with your app.

App Engine �exible environment

You can use the Debugger with the App Engine Python runtime or a custom runtime.

1. Make sure your App Engine Flexible VM instances are running:

A 64-bit Debian Linux image

Python 3

2. Make sure your app.yaml (/appengine/docs/�exible/python/con�guring-your-app-with-app-yaml)

�le contains the following lines:

try:

 import googleclouddebugger

 googleclouddebugger.enable(

 breakpoint_enable_canary=True

)

except ImportError:

 pass

 breakpoint_enable_canary=False

https://cloud.google.com/debugger/docs/source-context
https://cloud.google.com/appengine/docs/flexible/python/configuring-your-app-with-app-yaml

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 5/13

If you are using a Custom Runtime, use runtime: custom.

3. Add google-python-cloud-debugger to requirements.txt.

4. Add the following lines as early as possible in your initialization code, such as in your
main function, or in manage.py when using the Django web framework (version 1.* only).

To debug with canarying enabled:

To debug with canarying not enabled, set the breakpoint_enable_canary parameter to
False:

5. To have the Debug page in the Cloud Console automatically display source code
matching the deployed app, see Selecting source code automatically
 (/debugger/docs/source-context).

The Debugger is now ready for use with your app.

Google Kubernetes Engine

runtime: python

env: flex

try:

 import googleclouddebugger

 googleclouddebugger.enable(

 breakpoint_enable_canary=True

)

except ImportError:

 pass

breakpoint_enable_canary=False

GCLOUDCONSOLE (#console)

https://cloud.google.com/debugger/docs/source-context

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 6/13



To enable Debugger using gcloud, complete the following steps:

1. Create your cluster with one of the following access scopes:

https://www.googleapis.com/auth/cloud-platform grants your cluster access
to all Google Cloud APIs.

https://www.googleapis.com/auth/cloud_debugger grants your cluster access
to only the Debugger API. Use this access scope to harden your cluster's security
 (/kubernetes-engine/docs/how-to/hardening-your-cluster).

Note: You cannot change the access scopes of a cluster after creation.

2. Add the Debugger package to your app:

If you use a requirements.txt �le, add the following line:

If you use a Dockerfile, add the following line:

3. Add the following lines as early as possible in your initialization code, such as in your main
function, or in manage.py when using the Django web framework:

To debug with canarying enabled:

gcloud container clusters create example-cluster-name \

 --scopes=https://www.googleapis.com/auth/cloud_debugger

 google-python-cloud-debugger

 RUN pip install google-python-cloud-debugger

 try:

 import googleclouddebugger

 googleclouddebugger.enable(

 breakpoint_enable_canary=True

)

 except ImportError:

 pass

https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 7/13

To debug with canarying NOT enabled, set the breakpoint_enable_canary parameter to
False:

On the Debug page, select the location of the source code. To have the Debug page in the Cloud
Console automatically display source code matching the deployed app, see Selecting source code
automatically (/debugger/docs/source-context).

The Debugger is now ready to use.

Compute Engine

1. Make sure your Compute Engine VM instances are running:

A 64-bit Debian Linux image

Python 3

2. Make sure your Compute Engine VM instances are created with the access scope option
Allow full access to all Cloud APIs, or have one of the following access scopes:

https://www.googleapis.com/auth/cloud-platform

https://www.googleapis.com/auth/cloud_debugger

3. Download the Debugger agent.

The easiest way to install the Python Debugger is with [pip][pip]:

4. Add the following lines as early as possible in your initialization code, such as in your
main function, or in manage.py when using the Django web framework.

To debug with canarying enabled:

 breakpoint_enable_canary=False

pip install google-python-cloud-debugger

https://cloud.google.com/debugger/docs/source-context

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 8/13



To debug with canarying not enabled, set the breakpoint_enable_canary parameter to
False:

If you can't change the code, run the Debugger agent as a module.

To debug with canarying enabled:

To debug with canarying not enabled, set the breakpoint_enable_canary parameter to
False:

Note: When running Debugger as a module, the value for --breakpoint_enable_canary is a string.

Any value other than True is treated as False.

try:

 import googleclouddebugger

 googleclouddebugger.enable(

 module='[MODULE]',

 version='[VERSION]'

 breakpoint_enable_canary=True

)

except ImportError:

 pass

breakpoint_enable_canary=False

python -m googleclouddebugger \

 --module=[MODULE] \

 --version=[VERSION] \

 --breakpoint_enable_canary=True

 -- \

 myapp.py

breakpoint_enable_canary=False

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 9/13

Replace the placeholders in the command as follows:

[MODULE] is the name of your app.
This, along with the version, is used to identify the debug target in the Cloud
Console Debug page.
Examples: MyApp, Backend, or Frontend.

[VERSION] is the app version (for example, the build ID).
The Cloud Console Debug page displays the running version as [MODULE] -
[VERSION].
Example values: v1.0, build_147, or v20170714.

The Debugger is now ready for use with your app.

To have the Debug page in the Cloud Console automatically display source code matching the
deployed app see Selecting source code automatically (/debugger/docs/source-context).

Cloud Run and Cloud Run for Anthos on Google Cloud

1. Python package.

If you use a requirements.txt �le, add the following line:

If you do not, add the following line to your Dockerfile:

2. Add the following lines as early as possible in your initialization code, such as in your
main function, or in manage.py when using the Django web framework:

To debug with canarying enabled:

google-python-cloud-debugger

RUN pip install google-python-cloud-debugger

try:

 import googleclouddebugger

https://cloud.google.com/debugger/docs/source-context

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 10/13

To debug with canarying not enabled, set the breakpoint_enable_canary parameter to
False:

On the Debug page, select the location of the source code. To have the Debug page in the Cloud
Console automatically display source code matching the deployed app, see Selecting source
code automatically (/debugger/docs/source-context).

The Debugger is now ready to use.

Local and elsewhere

1. Make sure your workstation is running:

A 64-bit Debian Linux image

Python 3

2. Download the Debugger agent.

The easiest way to install the Python Debugger is with [pip][pip]{: .external}:

3. Download service account credentials.

To use the Cloud Debugger agent for Python on machines not hosted by Google Cloud,
the agent must use Google Cloud service-account credentials to authenticate with the
Cloud Debugger Service.

 googleclouddebugger.enable(

 breakpoint_enable_canary=True

)

except ImportError:

 pass

breakpoint_enable_canary=False

pip install google-python-cloud-debugger

https://cloud.google.com/debugger/docs/source-context

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 11/13

Use the Cloud Console Service Accounts page
 (https://console.cloud.google.com/iam-admin/serviceaccounts/project) to create a credentials
�le for an existing or new service-account. The service-account must have at least the
Cloud Debugger Agent role.

Place the service-account JSON �le alongside the Cloud Debugger agent for Python.

4. Add the following lines as early as possible in your initialization code, such as in your
main function, or in manage.py when using Django Web Framework.

To debug with canarying enabled:

To debug with canarying NOT enabled, set the breakpoint_enable_canary parameter to
False:

If you can't change the code, run the Debugger agent as a module.

To debug with canarying enabled:

try:

 import googleclouddebugger

 googleclouddebugger.enable(

 module='[MODULE]',

 version='[VERSION]',

 breakpoint_enable_canary=True

 service_account_json_file='/opt/cdbg/gcp-svc.json')

except ImportError:

 pass

breakpoint_enable_canary=False

python \

 -m googleclouddebugger \

 --module=[MODULE] \

 --version=[VERSION] \

 --breakpoint_enable_canary=True

 --service_account_json_file=/opt/cdbg/gcp-svc.json \

 -- \

 myapp.py

https://console.cloud.google.com/iam-admin/serviceaccounts/project

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 12/13



To debug with canarying not enabled, set the breakpoint_enable_canary parameter to
False:

Note: When running Debugger as a module, the value for --breakpoint_enable_canary is a string.

Any value other than True is treated as False.

Replace the placeholders in the command as follows:

[MODULE] is the name of your app.
This, along with the version, is used to identify the debug target in the Cloud
Console Debug page.
Examples: MyApp, Backend, or Frontend.

[VERSION] is the app version (for example, the build ID).
The Cloud Console Debug page displays the running version as [MODULE] -
[VERSION].
Example values: v1.0, build_147, or v20170714.

The GOOGLE_APPLICATION_CREDENTIALS environment variable can be used instead of
specifying service_account_json_file.

The Debugger is now ready for use with your app.

The Debug page in the Cloud Console can display local source �les, without upload, for local
development. See Selecting source code manually (/debugger/docs/source-options).

You can �nd the Debugger agent's code and documentation on GitHub

s://github.com/GoogleCloudPlatform/cloud-debug-python).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

breakpoint_enable_canary=False

https://cloud.google.com/debugger/docs/source-options
https://github.com/GoogleCloudPlatform/cloud-debug-python
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

8/23/2020 Setting Up Cloud Debugger for Python | Google Cloud

https://cloud.google.com/debugger/docs/setup/python 13/13

Last updated 2020-07-21 UTC.

