1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

NET (https:/cloud.google.com/dotnet/) Guides

Using Pub/Sub with .NET

Many apps do background processes outside of a web request. In this sample, the Bookshelf
app sends tasks to a separate background worker for execution. The worker gathers
information from the Google Books API (https://developers.google.com/books/) and updates the

book information in the database. This sample demonstrates how to set up separate services
in App Engine, how to run a worker process in the App Engine flexible environment, and how to
deal with lifecycle events.

This page is part of a multipage tutorial. To start from the beginning and read the setup
instructions, go to .NET Bookshelf app

(https://cloud.google.com/dotnet/docs/getting-started/tutorial-app).

Configuring settings

1. To open the sample app in Visual Studio, in the getting-started-dotnet\aspnet\5-
pubsub directory, double-click 5-pubsub.

2. In the Solution Explorer pane, click Bookshelf > Web.config.
3. In bookshelf\Web.config, complete the following steps:
a. Set GoogleCloudSamples:ProjectId to your project ID.

b. Set the value of GoogleCloudSamples:BookStore to the same value you used during
the Using Structured Data

(https:/cloud.google.com/dotnet/docs/getting-started/using-structured-data) part of this
tutorial.

c. If you used Cloud SQL
(https://cloud.google.com/dotnet/docs/getting-started/using-cloud-sql) or SQL Server

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 1/10

https://cloud.google.com/dotnet/
https://cloud.google.com/docs/overview/
https://developers.google.com/books/
https://cloud.google.com/dotnet/docs/getting-started/tutorial-app
https://cloud.google.com/dotnet/docs/getting-started/using-structured-data
https://cloud.google.com/dotnet/docs/getting-started/using-cloud-sql
https://cloud.google.com/dotnet/docs/getting-started/using-sql-server

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

(https:/cloud.google.com/dotnet/docs/getting-started/using-sql-server) during the
structured data step, find the <connectionStrings> XML element and set the
connectionString to the same value you used during that step.

d. Set GoogleCloudSamples :BucketName to the name of the Cloud Storage bucket

(https:/cloud.google.com/dotnet/docs/getting-started/using-cloud-storage) you created
previously.

4. Save and close bookshelf\Web.config.
5. In the Solution Explorer pane, go to Worker > Web.config.
6. In worker\Web.config, complete the following steps:

a. Set GoogleCloudSamples:ProjectId to your project ID.

b. Set the value of GoogleCloudSamples:BookStore to the same value you used during
the Using Structured Data
(https:/cloud.google.com/dotnet/getting-started/using-structured-data) step of this
tutorial.

c. If you used Cloud SQL
(https://cloud.google.com/dotnet/docs/getting-started/using-cloud-sql) or SQL Server
(https:/cloud.google.com/dotnet/docs/getting-started/using-sql-server) during the
structured data step, find the <connectionStrings> XML element and set the
connectionString to the same value you used during that step.

d. Set GoogleCloudSamples :BucketName to the name of the Cloud Storage bucket

(https:/cloud.google.com/dotnet/docs/getting-started/using-cloud-storage) you created
previously.

7. Save and close worker\Web.config.

Running the app on your local machine

1. In Visual Studio, in the Solution Explorer pane, right-click Solution, and click Set StartUp
Projects.

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 2/10

https://cloud.google.com/dotnet/docs/getting-started/using-sql-server
https://cloud.google.com/dotnet/docs/getting-started/using-cloud-storage
https://cloud.google.com/dotnet/getting-started/using-structured-data
https://cloud.google.com/dotnet/docs/getting-started/using-cloud-sql
https://cloud.google.com/dotnet/docs/getting-started/using-sql-server
https://cloud.google.com/dotnet/docs/getting-started/using-cloud-storage

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

Solution Explorer * 0 x
@ o-5a[p=[8—
Search Solution Explorer (Ctrl+;) P~

b .nuget = Build Solution I
b GE] bookshelf Rebuild Solution
b &[c lib Clean Solution
b alcH test Analyze
b s worker
Batch Build...

Configuration Manager...
B Manage NuGet Packages for Solution...
[Restore NuGet Packages

{*} Cleanup All Code...

== Collapse All Recursively |
Mew Solution Explorer View
Calculate Code Metrics

Project Dependencies...

Project Build Order...
Add
£} Set StartUp Projects...
¥D View History...
Compare with Unmodified...

D Annotate

2. Click Multiple startup projects.
3. For the Bookshelf and Worker rows, set the Action to Start, and then click OK.

Solution '5-pubsub’ Property Pages ? *
Configuration: | INIGA Flatform: | INAA Configuration Manager...
4 Common Properties (O Current selection
Startup Project (0 Single startup project

Project Dependencies

Code Analysis Settings Soskshel
Debug Source Files (® Multiple startup projects:
I Configuration Properties - -
Project Action +
bookshelf Start
+

lib None
test None
worker Start

Cancel Apply

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 3/10

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

4. Press F5 to run the projects.

5. Add some books to the bookshelf. If you have both the app and worker instance running
locally, you can watch the worker update the book information in the background.

Deploying the Bookshelf app to Compute Engine

1. In Visual Studio, in the Solution Explorer pane, right-click Bookshelf, and then click

Publish.
Ml Solution Explorer 5
5
@ o--¢am k= 2
A Zearch Solution Explorer {Ctrl+)) P~ ;—'|
]
fad Solution “WebApplication' {1 project) -
| _ﬁ WEhP. nliratinn
b Pro % Build
b =W Ref Rebuild
Apy Clean
[App
[Cor View '
B Car Analyze »
P fon @ | Publish...
b flo CeeFionee Azoea AT AR a ek 2 o

2. Create a new custom profile as you did in the Using_Datastore

(https://cloud.google.com/dotnet/docs/getting-started/using-cloud-
datastore#deploying_the_app_to_compute_engine)

part of this tutorial.
3. Click Publish.

Deploying the worker to Compute Engine

1. In Visual Studio, in the Solution Explorer pane, right-click Worker, and click Publish.

2. Create a new custom profile as you did in the Using_ Datastore

(https://cloud.google.com/dotnet/docs/getting-started/using-cloud-
datastore#deploying_the_app_to_compute_engine)

part of this tutorial.
3. Click Publish.

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 4/10

https://cloud.google.com/dotnet/docs/getting-started/using-cloud-datastore#deploying_the_app_to_compute_engine
https://cloud.google.com/dotnet/docs/getting-started/using-cloud-datastore#deploying_the_app_to_compute_engine

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

Running the app on Compute Engine

In your web browser, enter the address of your first Compute Engine instance.

App structure

This diagram shows the app's components and how they fit together.

bookshelf worker

[[} [y P P [A
enqueue e pull tasks
tasks

Understanding the code

This section walks you through how to create a queue, add tasks to the queue, and use the
worker to process tasks.

Create a queue

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 5/10

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud
A Pub/Sub topic and subscription together form a queue.

S rublisher

o Message
l Cloud Pub/Sub
Topic T " omm Message
l €© ™ Storage

© Subscription

!

(4] Message (5] Ack
e

wam Subscriber

A QueueMessage contains the ID of a book to look up in the Google Books API.

aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-

pubsub/lib/Services/BookDetailLookup.cs)
SETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/5-PUBSUB/LIB/SERVICES/BOOKDETAILLOOKUP.CS)

private class QueueMessage

{
public long BookId;

s

A book ID is added to a topic named book-process-queue. A subscription named shared-
worker-subscription subscribes to this topic. The worker watches this subscription for tasks
to execute.

The full topic and subscription paths include the project name.

aspnet/5-pubsub/lib/Services/BookDetailLookup.cs

(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-
pubsub/lib/Services/BookDetailLookup.cs)

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 6/10

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

SETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/5-PUBSUB/LIB/SERVICES/BOOKDETAI LLOOKUP.CS)I

_topicName = new TopicName(projectId, options.TopicId);
_subscriptionName = new SubscriptionName(projectId, options.SubscriptionId);

CreateTopicAndSubscription() attempts to create a topic and subscription in Pub/Sub, but
first checks to see if it already exists.

aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-
pubsub/lib/Services/BookDetailLookup.cs)

S3ETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/5-PUBSUB/LIB/SERVICES/BOOKDETAILLOOKUP.CS)

public void CreateTopicAndSubscription()

{
try
{
_pub.CreateTopic(_topicName);
_logger.LogVerbose("Created topic " + _topicName);
}
catch (Grpc.Core.RpcException e)
when (e.Status.StatusCode == Grpc.Core.StatusCode.AlreadyExists)
{
// The topic already exists. Ok.
_logger.LogError(_topicName + " already exists", e);
}
try
{
_sub.CreateSubscription(_subscriptionName, _topicName, null, 9);
_logger.LogVerbose("Created subscription " + _subscriptionName);
}
catch (Grpc.Core.RpcException e)
when (e.Status.StatusCode == Grpc.Core.StatusCode.AlreadyExists)
{
// The subscription already exists. Ok.
_logger.LogError(_subscriptionName + " already exists", e);
}
}

Queue tasks

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 710

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

The QueueMessage is JSON-encoded, and the resulting JSON is base64-encoded. While this is
excessive for encoding a simple long, this is the preferred way to encode messages so that they
are compatible with the Pub/Sub API.

aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-

pubsub/lib/Services/BookDetailLookup.cs)
SETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/5-PUBSUB/LIB/SERVICES/BOOKDETAILLOOKUP.CS)

public void EnqueueBook(long bookId)

{
var message = new QueueMessage() { BookId = bookId };
var json = JsonConvert.SerializeObject(message);
_pub.Publish(_topicName, new[] { new PubsubMessage()
{

Data = Google.Protobuf.ByteString.CopyFromUtf8(json)

Y3

}

The worker

The worker is a separate app that listens to Pub/Sub events. This splits the app into two
independent processes that communicate by using Pub/Sub, instead of directly with each
other.

Process books

To process a book, the task retrieves the book by its ID, finds additional information, and then
saves the updated information in the database.

aspnet/5-pubsub/lib/Services/BookDetailLookup.cs

(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-
pubsub/lib/Services/BookDetailLookup.cs)

SETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/5-PUBSUB/LIB/SERVICES/BOOKDETAILLOOKUP.CS)

public void ProcessBook(IBookStore bookStore, long bookId)

{
var book = bookStore.Read(bookId);

_logger.LogVerbose($"Found {book.Title}. Updating.");
var query = "https://www.googleapis.com/books/v1/volumes?q="

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 8/10

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

+ Uri.EscapeDataString(book.Title);
var response = WebRequest.Create(query).GetResponse();
var reader = new StreamReader (response.GetResponseStream());
var json = reader.ReadToEnd();
UpdateBookFromJdson(json, book);
bookStore.Update(book) ;

The function PullOnce reads messages from the subscription and calls ProcessBook for every
message.

aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-

pubsub/lib/Services/BookDetailLookup.cs)
SETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/5-PUBSUB/LIB/SERVICES/BOOKDETAILLOOKUP.CS)

private void PullOnce(Action<long> callback, CancellationToken cancellatioal
{

_logger.LogVerbose($"Pulling messages from {_subscriptionName}...");

// Pull some messages from the subscription.

var response = _sub.Pull(_subscriptionName, false, 3,
CallSettings.FromCallTiming(
CallTiming.FromExpiration(
Expiration.FromTimeout (
TimeSpan.FromSeconds(90)))));
if (response.ReceivedMessages == null)
{
// HTTP Request expired because the queue was empty. Ok.
_logger.LogVerbose("Pulled no messages.");

return;
}
_logger.LogVerbose($"Pulled {response.ReceivedMessages.Count} messages."
if (response.ReceivedMessages.Count == 0)
{
return;
}
foreach (var message in response.ReceivedMessages)
{
try
{

// Unpack the message.
byte[] json = message.Message.Data.ToByteArray();
var gmessage = JsonConvert.DeserializeObject<QueueMessage>(

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub 910

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/5-pubsub/lib/Services/BookDetailLookup.cs

1/6/2020 Using Pub/Sub with .NET | .NET | Google Cloud

Encoding.UTF8.GetString(json));
// Invoke ProcessBook() .
callback(gmessage.BookId) ;

}
catch (Exception e)
{
_logger.LogError("Error processing book.", e);
}

}

// Acknowledge the message so we don't see it again.

var ackIds = new string[response.ReceivedMessages.Count];

for (int i = @; i < response.ReceivedMessages.Count; ++i)
ackIds[i] = response.ReceivedMessages[i].AckId;

_sub.Acknowledge(_subscriptionName, ackIds);

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
(https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
(https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated December 4, 2079.

https://cloud.google.com/dotnet/docs/getting- started/using- pub-sub

10/10

https://cloud.google.com/dotnet/docs/getting-started/using-cloud-storage
https://cloud.google.com/dotnet/docs/getting-started/authenticate-users
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

