1/6/2020

Using SQL Server with .NET | .NET | Google Cloud

NET (https://cloud.google.com/dotnet/) Guides

Using SQL Server with .NET

This part of the .NET Bookshelf tutorial shows how the sample app stores its persistent data
in Microsoft SQL Server running on a Compute Engine VM.

This page is part of a multipage tutorial. To start from the beginning and read the setup
instructions, go to .NET Bookshelf app
(https://cloud.google.com/dotnet/docs/getting-started/tutorial-app).

Create the SQL Server instance

a W N

. Create a new Compute Engine instance.

. For Instance ID, enter library.
. For Zone, select us-west1-a.
. In the Boot Disk section, click Change.

. On the Application Images tab, select the SQL Server 2014 Standard on Windows Server

2012 R2 image, and then click Select.

. To create the VM instance, click Create.

. When it's ready, click the name of the instance. It can take a few minutes for the instance

to be ready. When the instance is ready, it is visible in the instances list.

. On the Instance details page, click Set Windows password.

. To create the user account on your instance, enter a username of your choice, and then

click Set. Make a note of the provided password and close the dialog.

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server

1/10

https://cloud.google.com/dotnet/
https://cloud.google.com/docs/overview/
https://cloud.google.com/dotnet/docs/getting-started/tutorial-app
https://console.cloud.google.com/compute/instancesAdd

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

Create the SQL Server database
1. In the VM instances list, click the RDP link next to your SQL Server instance. Sign in with
the username and password you set up during instance creation.
2. In the Windows Start menu, enter SQL Server 2014 Manage.
3. Right-click SQL Server 2014 Management Studio and select Run as administrator.
4. In the Connect to Server window, click Connect.
5. Right-click Databases and select New database.

6. Name the database bookshelf, and then click OK.

Configure the SQL Server
1. In SQL Server 2014 Management Studio, click the Security folder for the 1ibrary SQL
Server instance.
. Right-click Logins and select New login.
. For Login name, enter dotnetapp.

. For the Authentication method, click SQL Server Authentication.

a »~» W N

. For Password, enter a password of your choice. Don't enable the Enforce password policy
option.

6. Change the Default Database to be the bookshelf database you previously created.

7. In the left side of the New login dialog, click User Mapping and complete the following
steps:

a. For the bookshelf database, click the Map checkbox.

b. Under Database role membership for: bookshelf, click all of the roles except for the
following:

¢ db_denydatareader
¢ db_denydatawriter
8. To create the new database login account, click OK.

9. The user you created is set to use SQL Server authentication so SQL Server needs to be
configured to allow this authentication method. In SQL Server 2014 Management Studio
right-click the Library SQL Server instance you created and select Properties.

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server

210

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

10. In the left-side menu of the Server Properties dialog, click Security.

11. For the Server Authentication setting, select SQL Server and Windows Authentication
mode, and then click OK.

12. To restart the SQL Server service, right-click the Library SQL Server instance and select
Restart.

Create a firewall rule for SQL Server

Configure a firewall rule to allow traffic on port 1433 so other clients can connect to the newly
created SQL Server instance over the internet.

1. In the Google Cloud Console, go to the Firewall rules section.

2. Click Add firewall rule and complete the following fields:
a. For the new Firewall Rule Name, enter allow-tcp-1433.
b. For Source Filter, select IP Ranges.

c. To allow access for all IP addresses, for Source IP Ranges, enter 6.6.0.0/0.

Warning: This configuration leaves your SQL Server instance open to traffic from everyone,
everywhere. It is used only for demonstration purposes. In production environments, restrict

access to only those IP addresses that need access.

d. For Allowed protocols and ports, enter tcp:1433.

3. To create the firewall rule, click Create.

Configuring settings
1. To open the sample app in Visual Studio, in the getting-started-dotnet\aspnet\2-
structured-data directory, double-click 2-structured-data.slIn.
2. In the Solution Explorer pane, click Web.config.

3. In Web.config, complete the following steps:

a. Set GoogleCloudSamples:ProjectId to your project ID.

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server 3/10

https://console.cloud.google.com/networking/firewalls/list

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

b. Set GoogleCloudSamples:BookStore to sqlserver.

c. Near the bottom of the file, under <connectionStrings>, find the connectionStrings
XML sub-element with the attribute name="LocalSqlServer". Update the
connectionString value with the external IP address, database name, username, and
password of your SQL Server instance. For example, the connectionString for a
remote SQL Server on IP 184.155.20.171 with database = bookshelf, user =
dotnetapp and password = test looks like this:

connectionString="Data Source=104.155.20.171;Initial
Catalog=bookshelf;Integrated Security=False;User
ID=dotnetapp;Password=test;MultipleActiveResultSets=True"

4. Save and close Web.config.

5. To build the solution, in the Visual Studio menu, click Build and then select Build Solution.

6. To create the database tables, in the Visual Studio menu, go to Tools > Nuget Package
Manager > Package Manager Console. At the PM > prompt, enter the following
command:

Add-Migration Init

7. Create the tables in the SQL Server database that are used to store the books' data for the
Bookshelf app. In the Package Manager Console, enter the following command:

Update-Database

Running the app on your local machine

In Visual Studio, press F5 to run the project. Now you can browse the app's web pages to add,
edit, and delete books.

App structure

This diagram shows the app's components and how they fit together. The app follows the
classic ASPNET MVC (http://www.asp.net/mvc) pattern. An IBookStore interface between the
BooksController and DbBookStore lets you switch to storing book data in Datastore without
changing any code.

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server 4/10

http://www.asp.net/mvc

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

1 __— Details View

BooksController W Book Form View
/Books/. ..

Title

— .
Author Index View

IBookStore DbBookStore Entity Framework SQL Server

Understanding the code

This section walks you through the app's code and explains how it works.

The data model

The Book class contains information about one book as well as additional fields that are used
in later tutorials:

aspnet/2-structured-data/Models/Book.cs

(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-

data/Models/Book.cs)
ATFORM/GETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/2-STRUCTURED-DATA/MODELS/BOOK.CS)

[Bind(Include = "Title, Author, PublishedDate, Description")]
public class Book
{

[Key]

public long Id { get; set; }

[Required]
public string Title { get; set; }

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server 5/10

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Models/Book.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Models/Book.cs

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

public string Author { get; set; }

[Display(Name = "Date Published")]
[DataType(DataType.Date)]
public DateTime? PublishedDate { get; set; }

public string ImageUrl { get; set; }

[DataType(DataType.MultilineText)]
public string Description { get; set; }

public string CreatedById { get; set; }

Entity Framework's DbSet (https://msdn.microsoft.com/en-us/library/gg696460(v=vs.113).aspx)
converts LINQ (https://msdn.microsoft.com/en-us/library/bb397926.aspx) queries and Create, Read,
Update, and Delete (CRUD) operations into SQL queries. The ApplicationDbContext class
keeps a DbSet of Books.

aspnet/2-structured-data/Models/ApplicationDbContext.cs
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-

data/Models/ApplicationDbContext.cs)

TARTED-DOTNET/BLOB/MASTER/ASPNET/2-STRUCTURED-DATA/MODELS/APPLICATIONDBCONTEXT.CS)

public class ApplicationDbContext : DbContext

{
/] ...
public DbSet<Book> Books { get; set; }

Handling user submissions with forms

The add/edit HTML form allows users to add and edit book submissions.

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server 6/10

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Models/ApplicationDbContext.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Models/ApplicationDbContext.cs
https://msdn.microsoft.com/en-us/library/gg696460(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

Add book

Title

Author

Date Published
Description

The HTML form is created using Razor
(http://www.asp.net/web-pages/overview/getting-started/introducing-razor-syntax-c), templates. This
Razor template specifies that the form include text input fields for Title, Author, Date Published,

and Description:

aspnet/2-structured-data/Views/Books/Form.cshtml
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-

data/Views/Books/Form.cshtml)

TTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/2-STRUCTURED-DATA/VIEWS/BOOKS/FORM.CSHTML)

<form action="/Books/@Model.FormAction/@Model.Book.Id" method="post" id="book-form"
@Html.AntiForgeryToken()
<div class="form-group">
@Html.LabelFor(model => model.Book.Title)
@Html.EditorFor(model => model.Book.Title, new { htmlAttributes = new { @cla
@Html.ValidationMessageFor(model => model.Book.Title, "", new { @class = "te
</div>

<div class="form-group">
@Html.LabelFor(model => model.Book.Author)
@Html.EditorFor(model => model.Book.Author, new { htmlAttributes = new { @cl
@Html.ValidationMessageFor(model => model.Book.Author, "", new { @class = "t
</div>

<div class="form-group">
@Html.LabelFor(model => model.Book.PublishedDate)
@Html.EditorFor(model => model.Book.PublishedDate, new { htmlAttributes = ne

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server 710

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Views/Books/Form.cshtml
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Views/Books/Form.cshtml
http://www.asp.net/web-pages/overview/getting-started/introducing-razor-syntax-c

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

@Html.ValidationMessageFor(model => model.Book.PublishedDate, "", new { @cla
</div>

<div class="form-group">
@Html.LabelFor(model => model.Book.Description)
@Html.EditorFor(model => model.Book.Description, new { htmlAttributes = new
@Html.ValidationMessageFor(model => model.Book.Description, "", new { @class
</div>

<button type="submit" class="btn btn-success">Save</button>
</form>

Handling form submissions

When you click Add Book, the BooksController.Create() method displays the form. After the
form is filled and you click Save, the BooksController.Create() method receives the form's
contents and sends them to the SQL Server Database via the IBookStore: :Create() method.
Note that the Create method is annotated with HttpPost.

aspnet/2-structured-data/Controllers/BooksController.cs
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-

data/Controllers/BooksController.cs)

ARTED-DOTNET/BLOB/MASTER/ASPNET/2-STRUCTURED-DATA/CONTROLLERS/BOOKSCONTROLLER.CS)

// GET: Books/Create
public ActionResult Create()

{

return ViewForm("Create", "Create");

// POST: Books/Create

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Create(Book book)

{
if (ModelState.IsValid)
{
_store.Create(book) ;
return RedirectToAction("Details”, new { id = book.Id });
}
return ViewForm("Create"”, "Create", book);
}

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server 8/10

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Controllers/BooksController.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Controllers/BooksController.cs

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

The DbBookStore class invokes the ApplicationDbContext class to perform queries and CRUD
operations for data stored in the SQL Server database. The SQL query is created using an
Object-relational mapper (http:/wikipedia.org/wiki/Object-relational_mapping) (ORM) called Entity
Framework (https://msdn.microsoft.com/en-us/data/ef.aspx). Object-relational mappers let you
write data models as simple C# classes, and they generate all the SQL for you.

DbBookStore's CRUD methods, such as Create(), are simple calls to the ApplicationDbContext
class.

aspnet/2-structured-data/Models/DbBookStore.cs
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-

data/Models/DbBookStore.cs)

GETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/2-STRUCTURED-DATA/MODELS/DBBOOKSTORE.CS)

public void Create(Book book)

{
var trackBook = _dbcontext.Books.Add(book);
_dbcontext.SaveChanges() ;
book.Id = trackBook.Id;

}

Listing books

After you add books, click the Books link to go to the /Books page, which lists all the books
currently stored in the SQL Server database. The List() method does the work of listing all the
books by using data retrieved from the database.

aspnet/2-structured-data/Models/DbBookStore.cs
(https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-

data/Models/DbBookStore.cs)
GETTING-STARTED-DOTNET/BLOB/MASTER/ASPNET/2-STRUCTURED-DATA/MODELS/DBBOOKSTORE.CS)

public BookList List(int pageSize, string nextPageToken)

{
IQueryable<Book> query = _dbcontext.Books.OrderBy(book => book.Id);
if (nextPageToken != null)

{

long previousBookId = long.Parse(nextPageToken);
query = query.Where(book => book.Id > previousBookId);

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server 910

https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Models/DbBookStore.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Models/DbBookStore.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Models/DbBookStore.cs
https://github.com/GoogleCloudPlatform/getting-started-dotnet/blob/master/aspnet/2-structured-data/Models/DbBookStore.cs
http://wikipedia.org/wiki/Object-relational_mapping
https://msdn.microsoft.com/en-us/data/ef.aspx

1/6/2020 Using SQL Server with .NET | .NET | Google Cloud

var books = query.Take(pageSize).ToArray();
return new BookList()

{

Books = books,

NextPageToken = books.Count() == pageSize ? books.Last().Id.ToString() : nul

}s

The List() method composes a LINQ query that reads books from the books' DbSet. The query
gets a little complicated in order to implement paging. The query reads ten books and then
stores the Id for the last book in NextPageToken. When you click the More button, the List()
method unpacks the nextPageToken to get the Id of the last book and then queries for books

with larger IDs.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
(https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
(https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated December 4, 2019.

https://cloud.google.com/dotnet/docs/getting- started/using-sql-server

10/10

https://cloud.google.com/dotnet/docs/getting-started/using-structured-data
https://cloud.google.com/dotnet/docs/getting-started/using-cloud-storage
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

