
1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 1/32

You can listen to a document with the onSnapshot() method. An initial call using the callback you
provide creates a document snapshot immediately with the current contents of the single document.
Then, each time the contents change, another call updates the document snapshot.

Realtime listeners are not supported in the PHP client library.

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 2/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 3/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 4/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 5/32

Local writes in your app will invoke snapshot listeners immediately. This is because of an important
feature called "latency compensation." When you perform a write, your listeners will be noti�ed with
the new data before the data is sent to the backend.

Retrieved documents have a metadata.hasPendingWrites property that indicates whether the
document has local changes that haven't been written to the backend yet. You can use this property
to determine the source of events received by your snapshot listener:

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 6/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 7/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 8/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 9/32

When listening for changes to a document, collection, or query, you can pass options to control the
granularity of events that your listener will receive.

By default, listeners are not noti�ed of changes that only affect metadata. Consider what happens
when your app writes a new document:

1. A change event is immediately �red with the new data. The document has not yet been written
to the backend so the "pending writes" �ag is true.

2. The document is written to the backend.

3. The backend noti�es the client of the successful write. There is no change to the document
data, but there is a metadata change because the "pending writes" �ag is now false.

If you want to receive snapshot events when the document or query metadata changes, pass a listen
options object when attaching your listener:

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 10/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 11/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 12/32

If you just want to know when your write has completed, you can listen to the completion callback rather than using

ndingWrites. In JavaScript, use the Promise returned from your write operation by attaching a .then() callback.

pass a completion callback to your write function.

As with documents, you can use onSnapshot() instead of get() to listen to the results of a query.
This creates a query snapshot. For example, to listen to the documents with state CA:

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 13/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 14/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 15/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 16/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 17/32

The snapshot handler will receive a new query snapshot every time the query results change (that is,
when a document is added, removed, or modi�ed).

tant: As explained above under Events for local changes (#events-local-changes), you will receive events immediately

ocal writes. Your listener can use the metadata.hasPendingWrites �eld on each document to determine whether t

ment has local changes that have not yet been written to the backend.

It is often useful to see the actual changes to query results between query snapshots, instead of
simply using the entire query snapshot. For example, you may want to maintain a cache as individual
documents are added, removed, and modi�ed.

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 18/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 19/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 20/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 21/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 22/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 23/32

tant: The �rst query snapshot contains added events for all existing documents that match the query. This is becaus

getting a set of changes that bring your query snapshot current with the initial state of the query. This allows you, fo

ce, to directly populate your UI from the changes you receive in the �rst query snapshot, without needing to add spec

or handling the initial state.

The initial state can come from the server directly, or from a local cache. If there is state available in a
local cache, the query snapshot will be initially populated with the cached data, then updated with the

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 24/32

server's data when the client has caught up with the server's state.

When you are no longer interested in listening to your data, you must detach your listener so that your
event callbacks stop getting called. This allows the client to stop using bandwidth to receive updates.
For example:

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 25/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 26/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 27/32

A listen may occasionally fail — for example, due to security permissions, or if you tried to listen on
an invalid query. (Learn more about valid and invalid queries

https://cloud.google.com/firestore/docs/query-data/queries#compound_queries

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 28/32

 (/�restore/docs/query-data/queries#compound_queries).) To handle these failures, you can provide an
error callback when you attach your snapshot listener. After an error, the listener will not receive any
more events, and there is no need to detach your listener.

https://cloud.google.com/firestore/docs/query-data/queries#compound_queries

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 29/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 30/32

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 31/32

Combine listeners with simple and compound queries (/�restore/docs/query-data/queries).

https://cloud.google.com/firestore/docs/query-data/queries

1/25/2020 Getting realtime updates | Firestore | Google Cloud

https://cloud.google.com/firestore/docs/query-data/listen/ 32/32

Order and limit the documents retrieved (/�restore/docs/query-data/order-limit-data).

Understand billing for listeners (https://cloud.google.com/�restore/docs/pricing#operations).

https://cloud.google.com/firestore/docs/query-data/order-limit-data
https://cloud.google.com/firestore/docs/pricing#operations

