
1/25/2020 Specifying dependencies in Go  |  Cloud Functions Documentation

https://cloud.google.com/functions/docs/writing/specifying-dependencies-go/ 1/3

Cloud Functions in Go must provide all of their dependencies via either Go modules with a go.mod �le,
or a vendor directory. Your function cannot specify dependencies using both Go modules and a
vendor directory at the same time.

The Go runtime includes a number of system packages (/functions/docs/reference/go-system-packages)

in the execution environment. If your function uses a dependency that requires a system package
that is not listed, you can request a package
 (/functions/docs/reference/go-system-packages#requesting_a_package).

The content in this document applies to both Go 1.11 and Go 1.13.

Cloud Functions support Go's experimental Modules functionality
 (https://golang.org/doc/go1.11#modules), which enables you to specify dependencies in a go.mod �le at
the root of your project. When you deploy your function, dependencies speci�ed in the go.mod �le will
be fetched and built automatically.

The behavior of Go modules differs depending on whether you are developing inside or outside of
GOPATH. To determine whether you are inside GOPATH:

1. Navigate to your project directory.

2. Find your GOPATH by running the command:

This outputs a line similar to:

3. Find your current working directory by running:

https://cloud.google.com/functions/docs/reference/go-system-packages
https://cloud.google.com/functions/docs/reference/go-system-packages#requesting_a_package
https://golang.org/doc/go1.11#modules


1/25/2020 Specifying dependencies in Go  |  Cloud Functions Documentation

https://cloud.google.com/functions/docs/writing/specifying-dependencies-go/ 2/3

If your working directory begins with YOUR_GOPATH, you are inside GOPATH. In this case, generate your
go.mod �le by running the following three commands:

If your working directory does not begin with YOUR_GOPATH, you are outside GOPATH. In this case,
generate your go.mod �le by running the commands:

In the above example, MODULE is the name of your module. For example, your module name might be
example.com/myproject (note that the domain name is required). The go command automatically
detects the module name when you are inside GOPATH.

After you've created a go.mod �le, you can use the go get command to fetch dependencies and
automatically add them to your project. For example:

In the above example, DEPENDENCY is a dependency that you want to add to your function. For
example, the command go get cloud.google.com/go/storage adds the Cloud Storage client library
to your function.

ng: If you have both a go.mod �le and a vendor directory at the root of your project, the contents of the vendor direc

ignored when your function is built in the cloud. To ensure that your vendor directory is used, you must exclude the

d �le from your project's source code prior to deployment. If you are using the gcloud command-line tool, you can en

o.mod is not uploaded by using .gcloudignore (/sdk/gcloud/reference/topic/gcloudignore).

Cloud Functions also allows you to include your dependencies via a vendor directory
 (https://golang.org/cmd/go/#hdr-Vendor_Directories). Most of the time, vendor directories are maintained

https://cloud.google.com/sdk/gcloud/reference/topic/gcloudignore
https://golang.org/cmd/go/#hdr-Vendor_Directories


1/25/2020 Specifying dependencies in Go  |  Cloud Functions Documentation

https://cloud.google.com/functions/docs/writing/specifying-dependencies-go/ 3/3

with a dependency manager. You can use any dependency manager you like. For example, you can
use Go's Modules functionality to create a vendor directory from your go.mod �le.

If you have a go.mod �le and a vendor directory, the vendor directory will be ignored when you deploy
your function. You can use a .gcloudignore (/sdk/gcloud/reference/topic/gcloudignore) �le to avoid
uploading your go.mod and go.sum �les, in which case the contents of your vendor directory will be
respected:

1. Create a .gcloudignore �le at the root of your project directory with the following contents:

2. Create a vendor directory using the contents of your go.mod �le by running the following
command:

If your function's dependencies are hosted in a repository that is not publicly accessible, you must
use a vendor directory to fetch your dependencies before deploying your function. If you plan to use a
go.mod �le, see the instructions above to avoid con�icts between the go.mod �le and the vendor
directory.

https://cloud.google.com/sdk/gcloud/reference/topic/gcloudignore

