
1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 1/14

Go Guides

This tutorial is intended for those new to building apps in the cloud, such as engineers and
web developers, who want to learn key app development concepts as they apply to Google
Cloud.

Objectives

Learn basic Google Cloud tools, such as the Google Cloud Console
 (https://cloud.google.com/cloud-console) and gcloud (https://cloud.google.com/sdk/gcloud).

Deploy your app to the App Engine standard environment
 (https://cloud.google.com/appengine/docs/standard).

Persist your data with Cloud Firestore (https://cloud.google.com/�restore).

Store �le uploads in Cloud Storage (https://cloud.google.com/storage).

Monitor your app using Stackdriver (https://cloud.google.com/stackdriver).

For other language-speci�c tutorials for building your apps, see the following guides:

Deploying an app to Google Kubernetes Engine
 (https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-speci�c-app).

Costs

This tutorial uses the following billable components of Google Cloud:

App Engine (https://cloud.google.com/appengine/pricing)

 (https://cloud.google.com/go/)

Ge�ing sta�ed with Go

https://cloud.google.com/go/
https://cloud.google.com/docs/overview/
https://cloud.google.com/cloud-console
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/appengine/docs/standard
https://cloud.google.com/firestore
https://cloud.google.com/storage
https://cloud.google.com/stackdriver
https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app
https://cloud.google.com/appengine/pricing

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 2/14

Cloud Storage (https://cloud.google.com/storage/pricing)

Cloud Firestore (https://cloud.google.com/�restore/pricing)

Stackdriver (https://cloud.google.com/stackdriver/pricing)

The tutorial is designed to keep your resource usage within the limits of Google Cloud's Always
Free (https://cloud.google.com/free/docs/frequently-asked-questions#always-free) tier. To generate a
cost estimate based on your projected usage, use the pricing calculator
 (https://cloud.google.com/products/calculator). New Google Cloud users might be eligible for a free
trial (https://cloud.google.com/free-trial).

When you �nish this tutorial, you can avoid continued billing by deleting the resources you
created. For more information, see Cleaning up (#clean-up).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. To create a Cloud Firestore database in Native mode, complete the following steps:

a. In the Cloud Console, go to the Cloud Firestore viewer page.

GO TO THE CLOUD FIRESTORE VIEWER (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE

b. From the Select a Cloud Firestore mode screen, click Select Native Mode.

c. Select a location (https://cloud.google.com/�restore/docs/locations#types) for your Cloud
Firestore database. This location setting is the default Google Cloud resource

https://cloud.google.com/storage/pricing
https://cloud.google.com/firestore/pricing
https://cloud.google.com/stackdriver/pricing
https://cloud.google.com/free/docs/frequently-asked-questions#always-free
https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/firestore/data
https://cloud.google.com/firestore/docs/locations#types
https://cloud.google.com/firestore/docs/locations#default-cloud-location

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 3/14

location for your Google Cloud project
 (https://cloud.google.com/�restore/docs/locations#default-cloud-location). This location is
used for Google Cloud services in your Google Cloud project that require a location
setting, speci�cally, your default Cloud Storage (https://cloud.google.com/storage/docs)

bucket and your App Engine (https://cloud.google.com/appengine/docs/) app.

Warning: After you set the default resource location for your Google Cloud project, you cannot

change it.

d. Click Create Database.

5. Enable the App Engine Admin, Cloud Storage, Stackdriver Logging, and Stackdriver Error
Reporting APIs.

ENABLE THE APIS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=APPENGIN

6. In Cloud Shell, open the app's source code.

GO TO CLOUD SHELL (HTTPS://CLOUD.GOOGLE.COM/CONSOLE/CLOUDSHELL/OPEN?GIT_BRANCH

Cloud Shell provides command-line access to your Google Cloud resources directly from
the browser.

7. To download the sample code and change into the app directory, click Proceed.

8. In Cloud Shell, con�gure the gcloud tool to use your new Google Cloud project:

Replace PROJECT_ID with the Google Cloud project ID that you created using the Cloud
Console.

The gcloud command-line tool (https://cloud.google.com/sdk/gcloud/) is the primary way you
interact with your Google Cloud resources from the command line. In this tutorial, you use
the gcloud tool to deploy and monitor your app.

Running your app

1. Build the app, which automatically downloads dependencies as needed:

Configure gcloud for your project
gcloud config set project PROJECT_ID

go build

https://cloud.google.com/firestore/docs/locations#default-cloud-location
https://cloud.google.com/storage/docs
https://cloud.google.com/appengine/docs/
https://console.cloud.google.com/flows/enableapi?apiid=appengine.googleapis.com,storage-api.googleapis.com,logging.googleapis.com,clouderrorreporting.googleapis.com&redirect=https://console.cloud.google.com
https://cloud.google.com/console/cloudshell/open?git_branch=master&git_repo=https://github.com/GoogleCloudPlatform/golang-samples&working_dir=getting-started/bookshelf
https://cloud.google.com/sdk/gcloud/

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 4/14

getting-started/bookshelf/app.yaml
 (https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-
started/bookshelf/app.yaml)

OGLECLOUDPLATFORM/GOLANG-SAMPLES/BLOB/MASTER/GETTING-STARTED/BOOKSHELF/APP.YAML)

2. Run the app:

Replace PROJECT_ID with the Google Cloud project ID that you created.

3. In Cloud Shell, click Web preview , and select Preview on port 8080. This opens a new
window with your running app.

Deploying your app to App Engine

Google Cloud offers several options for running your code
 (https://cloud.google.com/hosting-options/). For this example, you use App Engine
 (https://cloud.google.com/appengine/docs/standard/) to deploy a scalable app to Google Cloud.
With zero-con�guration deployments and zero server management, App Engine lets you focus
on writing code. Plus, App Engine automatically scales to support sudden tra�c spikes.

The app.yaml �le is your main con�guration �le for deploying to App Engine:

1. In your terminal window, deploy the app to App Engine using the gcloud tool:

2. Your app is now viewable at the following URL, where PROJECT_ID is the Google Cloud
project ID that you created at the beginning of this tutorial:

GOOGLE_CLOUD_PROJECT=PROJECT_ID ./bookshelf

runtime: go112

on the command-line
gcloud app deploy

https://PROJECT_ID.appspot.com

https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/bookshelf/app.yaml
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/bookshelf/app.yaml
https://cloud.google.com/hosting-options/
https://cloud.google.com/appengine/docs/standard/

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 5/14

In your web browser, enter the URL to view the app.

Note: This SSL-protected domain is created automatically, and is useful for development. You can set

up a custom domain

 (https://cloud.google.com/appengine/docs/standard/go112/mapping-custom-domains) with App

Engine as well.

For more information on deploying to App Engine, see the Go 1.12 runtime environment
 (https://cloud.google.com/appengine/docs/standard/go112/runtime).

Persisting your data with Cloud Firestore

You cannot store information on your App Engine instances, because it is lost if the instance is
restarted, and doesn't exist when new instances are created. Instead, you use a database that
all your instances read from and write to.

Google Cloud offers several options for storing your data
 (https://cloud.google.com/products/storage/). In this example, you use Cloud Firestore to store the
data for each book. Cloud Firestore is a fully managed, serverless, NoSQL document database
that lets you store and query data. Cloud Firestore auto scales to meet your app needs, and
scales to zero when you're not using it. Add your �rst book now.

1. In your browser, go to the following URL, where PROJECT_ID is the project ID you created
at the beginning of the tutorial.

2. To create a book for your deployed app, click Add book.

https://PROJECT_ID.appspot.com

https://cloud.google.com/appengine/docs/standard/go112/mapping-custom-domains
https://cloud.google.com/appengine/docs/standard/go112/runtime
https://cloud.google.com/products/storage/

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 6/14

3. In the Title �eld, enter Moby Dick.

4. In the Author �eld, enter Herman Melville.

5. Click Save. There is now an entry to your Bookshelf app.

6. In the Cloud Console, to refresh the Cloud Firestore page, click Refresh . The data
appears in Cloud Firestore. The Bookshelf app stores each book as a Cloud Firestore
document (https://cloud.google.com/�restore/docs/data-model#documents) with a unique ID,
and all these documents are stored in a Cloud Firestore collection
 (https://cloud.google.com/�restore/docs/data-model#collections). For the purposes of this

https://cloud.google.com/firestore/docs/data-model#documents
https://cloud.google.com/firestore/docs/data-model#collections

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 7/14

getting-started/bookshelf/db_�restore.go
 (https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-
started/bookshelf/db_�restore.go)

OUDPLATFORM/GOLANG-SAMPLES/BLOB/MASTER/GETTING-STARTED/BOOKSHELF/DB_FIRESTORE.GO)

tutorial, the collection is called books.

Cloud Firestore stores the books by using the Cloud Firestore Client Library
 (http://googleapis.github.io/google-cloud-go/#/docs/google-cloud/latest/�restore/readme). Here is an
example of fetching a Cloud Firestore document:

// newFirestoreDB creates a new BookDatabase backed by Cloud Firestore.
// See the firestore package for details on creating a suitable
// firestore.Client: https://godoc.org/cloud.google.com/go/firestore.
func newFirestoreDB(client *firestore.Client) (*firestoreDB, error) {
 ctx := context.Background()
 // Verify that we can communicate and authenticate with the Firestore
 // service.
 err := client.RunTransaction(ctx, func(ctx context.Context, t *firestore.Tra
 return nil
 })
 if err != nil {
 return nil, fmt.Errorf("firestoredb: could not connect: %v", err)
 }
 return &firestoreDB{
 client: client,
 }, nil
}

// Close closes the database.

https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/bookshelf/db_firestore.go
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/bookshelf/db_firestore.go
http://googleapis.github.io/google-cloud-go/#/docs/google-cloud/latest/firestore/readme

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 8/14

For more information on using Cloud Firestore, see Adding data to Cloud Firestore
 (https://cloud.google.com/�restore/docs/manage-data/add-data).

Storing �le uploads in Cloud Storage

Now that you've added a book, it's time to add the book cover image. You cannot store �les on
your instances. A database isn't the right choice for image �les. Instead, you use Cloud Storage.

Cloud Storage (https://cloud.google.com/storage/docs/creating-buckets) is the primary blob store for
Google Cloud. You can use Cloud Storage to host app assets that you want to share across
Google Cloud. To use Cloud Storage, you need to create a Cloud Storage bucket
 (https://cloud.google.com/storage/docs/key-terms#buckets), a basic container to hold your data.

1. In the Cloud Console, go to the Cloud Storage Browser page.

GO TO THE CLOUD STORAGE BROWSER PAGE (HTTPS://CLOUD.GOOGLE.COM/CONSOLE/STORAGE

2. Click Create bucket.

3. In the Create bucket dialog, enter a name for your bucket by appending your Google
Cloud project ID to the string _bucket so the name looks like YOUR_PROJECT_ID_bucket.
This name is subject to the bucket name requirements
 (https://cloud.google.com/storage/docs/bucket-naming#requirements). All other �elds can
remain at their default values.

4. Click Create.

func (db *firestoreDB) Close(context.Context) error {
 return db.client.Close()
}

// Book retrieves a book by its ID.
func (db *firestoreDB) GetBook(ctx context.Context, id string) (*Book, error) {
 ds, err := db.client.Collection("books").Doc(id).Get(ctx)
 if err != nil {
 return nil, fmt.Errorf("firestoredb: Get: %v", err)
 }
 b := &Book{}
 ds.DataTo(b)
 return b, nil
}

https://cloud.google.com/firestore/docs/manage-data/add-data
https://cloud.google.com/storage/docs/creating-buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/console/storage/browser
https://cloud.google.com/storage/docs/bucket-naming#requirements

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 9/14

getting-started/bookshelf/main.go
 (https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-
started/bookshelf/main.go)

OOGLECLOUDPLATFORM/GOLANG-SAMPLES/BLOB/MASTER/GETTING-STARTED/BOOKSHELF/MAIN.GO)

5. After your bucket is created, click Edit book, and select an image to upload as your book's
cover. For example, you can use this public domain image:

6. Click Save. You're redirected to the homepage, where there is an entry to your Bookshelf
app.

The bookshelf app sends uploaded �les to Cloud Storage by using the Cloud Storage Client
Library (http://googleapis.github.io/google-cloud-go/#/docs/google-cloud/latest/storage/readme).

https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/bookshelf/main.go
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/bookshelf/main.go
http://googleapis.github.io/google-cloud-go/#/docs/google-cloud/latest/storage/readme

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 10/14

// uploadFileFromForm uploads a file if it's present in the "image" form field.
func (b *Bookshelf) uploadFileFromForm(ctx context.Context, r *http.Request) (url st
 f, fh, err := r.FormFile("image")
 if err == http.ErrMissingFile {
 return "", nil
 }
 if err != nil {
 return "", err
 }

 if b.StorageBucket == nil {
 return "", errors.New("storage bucket is missing: check bookshelf.go
 }
 if _, err := b.StorageBucket.Attrs(ctx); err != nil {
 if err == storage.ErrBucketNotExist {
 return "", fmt.Errorf("bucket %q does not exist: check books
 }
 return "", fmt.Errorf("could not get bucket: %v", err)
 }

 // random filename, retaining existing extension.
 name := uuid.Must(uuid.NewV4()).String() + path.Ext(fh.Filename)

 w := b.StorageBucket.Object(name).NewWriter(ctx)

 // Warning: storage.AllUsers gives public read access to anyone.
 w.ACL = []storage.ACLRule{{Entity: storage.AllUsers, Role: storage.RoleReade
 w.ContentType = fh.Header.Get("Content-Type")

 // Entries are immutable, be aggressive about caching (1 day).
 w.CacheControl = "public, max-age=86400"

 if _, err := io.Copy(w, f); err != nil {
 return "", err
 }
 if err := w.Close(); err != nil {
 return "", err
 }

 const publicURL = "https://storage.googleapis.com/%s/%s"
 return fmt.Sprintf(publicURL, b.StorageBucketName, name), nil
}

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 11/14

For more information on using Cloud Storage, see the list of how-to guides
 (https://cloud.google.com/storage/docs/how-to).

Monitoring your app using Stackdriver

You've deployed your app and created and modi�ed books. To monitor these events for your
users, use Stackdriver APM.

Monitor logs with Stackdriver Logging

1. In your browser, go to the /logs URL in your app:

This sends a custom entry to Stackdriver Logging. The entry contains the message `Hey, you
triggered a custom log entry. Good job!`.

2. Go to the Logs Viewer (https://cloud.google.com/console/logs), where you can monitor your app in
real time. When something goes wrong, this is one of the �rst places to look.

CLOUD CONSOLE GCLOUD

https://PROJECT_ID.appspot.com/logs

https://cloud.google.com/storage/docs/how-to
https://cloud.google.com/console/logs

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 12/14

3. In the resource drop-down list, select GAE Application.

4. In the logs drop-down list, select All logs.

There is a row for your custom log entry.

Monitor errors with Stackdriver Error Repo�ing

1. In the Cloud Console, go to the Error Reporting page.

GO TO ERROR REPORTING PAGE (HTTPS://CLOUD.GOOGLE.COM/CONSOLE/ERRORS)

Stackdriver Error Reporting highlights errors and exceptions in your app and lets you set
up alerting around them.

2. In your browser, go to the /errors URL in your app.

This generates a new test exception and sends it to Stackdriver.

https://PROJECT_ID.appspot.com/errors

https://cloud.google.com/console/errors

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 13/14

3. In the Cloud Console, return to the Error Reporting page, and in a few moments the new
error is visible. Click Auto Reload so you don't need to manually refresh the page.

Note: Stackdriver APM contains many tools to help debug and monitor your apps. For more information, see

the tutorials (https://cloud.google.com/stackdriver/docs/tutorials).

Cleaning up

To avoid incurring charges to your Google Cloud Platform account for the resources used in
this tutorial:

Delete the project

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

https://cloud.google.com/stackdriver/docs/tutorials
https://console.cloud.google.com/iam-admin/projects

1/23/2020 Getting started with Go | Go | Google Cloud

https://cloud.google.com/go/getting-started/ 14/14

3. In the dialog, type the project ID, and then click Shut down to delete the project.

What's next

Deploying an app to Google Kubernetes Engine
 (https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-speci�c-app)

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

