
1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 1/11

Go Guides

This tutorial shows how to handle sessions on App Engine
 (https://cloud.google.com/appengine/docs/standard/).

Many apps need session handling for authentication and user preferences. The Gorilla Web
Toolkit (https://www.gorillatoolkit.org/pkg/sessions) sessions package comes with a �le system
based implementation to perform this function. However, this implementation is unsuitable
for an app that can be served from multiple instances, because the session that is recorded in
one instance might differ from other instances. The gorilla/sessions
 (https://www.gorillatoolkit.org/pkg/sessions) package also comes with a cookie-based

implementation. But, this implementation requires encrypting cookies and storing the entire
session on the client, rather than just a session ID, which may be too large for some apps.

Objectives

Write the app.

Run the app locally.

Deploy the app on App Engine.

Costs

This tutorial uses the following billable components of Google Cloud:

App Engine (https://cloud.google.com/appengine/pricing)

Firestore (https://cloud.google.com/�restore/pricing)

 (https://cloud.google.com/go/)

Handling sessions with Firestore

https://cloud.google.com/go/
https://cloud.google.com/docs/overview/
https://cloud.google.com/appengine/docs/standard/
https://www.gorillatoolkit.org/pkg/sessions
https://www.gorillatoolkit.org/pkg/sessions
https://cloud.google.com/appengine/pricing
https://cloud.google.com/firestore/pricing

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 2/11

To generate a cost estimate based on your projected usage, use the pricing calculator
 (https://cloud.google.com/products/calculator). New Google Cloud users might be eligible for a free
trial (https://cloud.google.com/free-trial).

When you �nish this tutorial, you can avoid continued billing by deleting the resources you
created. For more information, see Cleaning up (#clean-up).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Enable the Firestore API.

ENABLE THE API (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=FIRESTORE.

5. Install and initialize the Cloud SDK (https://cloud.google.com/sdk/docs/).

6. Update gcloud components:

7. Prepare your development environment (https://cloud.google.com/go/docs/setup).

Se�ing up the project

gcloud components update  

https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=firestore.googleapis.com
https://cloud.google.com/sdk/docs/
https://cloud.google.com/go/docs/setup

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 3/11

getting-started/sessions/main.go
 (https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-
started/sessions/main.go)

GOOGLECLOUDPLATFORM/GOLANG-SAMPLES/BLOB/MASTER/GETTING-STARTED/SESSIONS/MAIN.GO)

1. In your terminal window, clone the sample app repository to your local machine:

2. Change to the directory that contains the sample code:

Understanding the web app

This app displays greetings in different languages for every user. Returning users are always
greeted in the same language.

Before the app can store preferences for a user, you need a way to store information about the
current user in a session. This sample app uses Firestore to store session data.

You can use firestoregorilla (https://github.com/GoogleCloudPlatform/�restore-gorilla-sessions), a
session store that's compatible with gorilla/sessions
 (https://www.gorillatoolkit.org/pkg/sessions).

1. The app starts by importing dependencies, de�ning an app type to hold a sessions.Store
and an HTML template, and de�ning the list of greetings.

git clone https://github.com/GoogleCloudPlatform/golang-samples.git  

cd golang-samples/getting-started/sessions  

https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/sessions/main.go
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/sessions/main.go
https://github.com/GoogleCloudPlatform/firestore-gorilla-sessions
https://www.gorillatoolkit.org/pkg/sessions

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 4/11

getting-started/sessions/main.go
 (https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-
started/sessions/main.go)

GOOGLECLOUDPLATFORM/GOLANG-SAMPLES/BLOB/MASTER/GETTING-STARTED/SESSIONS/MAIN.GO)

2. Next, the app de�nes a main function, which creates a new app instance, registers the
index handler, and starts the HTTP server. The newApp function creates the app instance by
initializing a sessions.Store with the firestoregorilla.New function.

// Command sessions starts an HTTP server that uses session state.
package main

import (
 "context"
 "fmt"
 "html/template"
 "log"
 "math/rand"
 "net/http"
 "os"

 "cloud.google.com/go/firestore"
 firestoregorilla "github.com/GoogleCloudPlatform/firestore-gorilla-sess
 "github.com/gorilla/sessions"
)

// app stores a sessions.Store. Create a new app with newApp.
type app struct {
 store sessions.Store
 tmpl *template.Template
}

// greetings are the random greetings that will be assigned to sessions.
var greetings = []string{
 "Hello World",
 "Hallo Welt",
 "Ciao Mondo",
 "Salut le Monde",
 "Hola Mundo",
}

 

func main() {
 

https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/sessions/main.go
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/sessions/main.go

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 5/11

 port := os.Getenv("PORT")
 if port == "" {
 port = "8080"
 }
 projectID := os.Getenv("GOOGLE_CLOUD_PROJECT")
 if projectID == "" {
 log.Fatal("GOOGLE_CLOUD_PROJECT must be set")
 }

 a, err := newApp(projectID)
 if err != nil {
 log.Fatalf("newApp: %v", err)
 }

 http.HandleFunc("/", a.index)

 log.Printf("Listening on port %s", port)
 if err := http.ListenAndServe(":"+port, nil); err != nil {
 log.Fatal(err)
 }
}

// newApp creates a new app.
func newApp(projectID string) (*app, error) {
 ctx := context.Background()
 client, err := firestore.NewClient(ctx, projectID)
 if err != nil {
 log.Fatalf("firestore.NewClient: %v", err)
 }
 store, err := firestoregorilla.New(ctx, client)
 if err != nil {
 log.Fatalf("firestoregorilla.New: %v", err)
 }

 tmpl, err := template.New("Index").Parse(`<body>{{.views}} {{if eq .vie
 if err != nil {
 return nil, fmt.Errorf("template.New: %v", err)
 }

 return &app{
 store: store,
 tmpl: tmpl,
 }, nil
}

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 6/11

getting-started/sessions/main.go
 (https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-
started/sessions/main.go)

GOOGLECLOUDPLATFORM/GOLANG-SAMPLES/BLOB/MASTER/GETTING-STARTED/SESSIONS/MAIN.GO)

3. The index handler gets the user's session, creating one if needed. New sessions are
assigned a random language and a view count of 0. Then, the view count is increased by
one, the session is saved, and the HTML template writes the response.

// index uses sessions to assign users a random greeting and keep track of
// views.
func (a *app) index(w http.ResponseWriter, r *http.Request) {
 if r.RequestURI != "/" {
 return
 }

 // name is a non-empty identifier for this app's sessions. Set it to
 // something descriptive for your app. It is used as the Firestore
 // collection name that stores the sessions.
 name := "hello-views"
 session, err := a.store.Get(r, name)
 if err != nil {
 // Could not get the session. Log an error and continue, saving
 // session.
 log.Printf("store.Get: %v", err)
 }

 if session.IsNew {
 // firestoregorilla uses JSON, which unmarshals numbers as floa
 session.Values["views"] = float64(0)
 session.Values["greeting"] = greetings[rand.Intn(len(greetings)
 }
 session.Values["views"] = session.Values["views"].(float64) + 1
 if err := session.Save(r, w); err != nil {
 log.Printf("Save: %v", err)
 // Don't return early so the user still gets a response.
 }

 if err := a.tmpl.Execute(w, session.Values); err != nil {
 log.Printf("Execute: %v", err)
 }
}

 

https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/sessions/main.go
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/sessions/main.go

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 7/11

The following diagram illustrates how Firestore handles sessions for the App Engine app.

Note: Firestore is a persistent, distributed, transactional database. Often, it's more appropriate to choose a

different storage solution for sessions such as Memcache (https://redislabs.com/lp/memcached-cloud/) or

Redis (https://redislabs.com), whose designs might result in faster operation in this use case.

Deleting sessions

firestoregorilla (https://github.com/GoogleCloudPlatform/�restore-gorilla-sessions) doesn't delete
old or expired sessions. You can delete session data
 (https://cloud.google.com/�restore/docs/using-console#delete_data) in the Google Cloud Console
 (https://console.cloud.google.com/�restore/) or implement an automated deletion strategy. If you
use storage solutions for sessions such as Memcache or Redis, expired sessions are
automatically deleted.

Running locally

1. In your terminal window, build the sessions binary:

https://redislabs.com/lp/memcached-cloud/
https://redislabs.com/
https://github.com/GoogleCloudPlatform/firestore-gorilla-sessions
https://cloud.google.com/firestore/docs/using-console#delete_data
https://console.cloud.google.com/firestore/

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 8/11

2. Start the HTTP server:

3. View the app in your web browser:

In the Cloud Shell toolbar, click Web preview and select Preview on port 8080.

You see one of �ve greetings: “Hello World”, “Hallo Welt”, "Hola mundo”, “Salut le Monde”,
or “Ciao Mondo.” The language changes if you open the page in a different browser or in
incognito mode. You can see and edit the session data in the Google Cloud Console
 (https://console.cloud.google.com/�restore/).

4. To stop the HTTP server, in your terminal window, press Control+C.

Deploying and running on App Engine

You can use the App Engine standard environment
 (https://cloud.google.com/appengine/docs/standard/) to build and deploy an app that runs reliably
under heavy load and with large amounts of data.

This tutorial uses the App Engine standard environment to deploy the server.

go build  

./sessions  

CLOUD SHELL LOCAL MACHINE

https://console.cloud.google.com/firestore/
https://cloud.google.com/appengine/docs/standard/

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 9/11

getting-started/sessions/app.yaml
 (https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-
started/sessions/app.yaml)

GOOGLECLOUDPLATFORM/GOLANG-SAMPLES/BLOB/MASTER/GETTING-STARTED/SESSIONS/APP.YAML)

The app.yaml �le contains the App Engine standard environment con�guration:

1. Deploy the app on App Engine:

2. View the live app at the following URL, where PROJECT_ID is your Google Cloud project
ID:

The greeting is now delivered by a web server running on an App Engine instance.

Debugging the app

If you cannot connect to your App Engine app, check the following:

1. Check that the gcloud deploy commands successfully completed and didn't output any
errors. If there were errors (for example, message=Build failed), �x them, and try
deploying the App Engine app (#deploying_the_web_app) again.

2. In the Cloud Console, go to the Logs Viewer page.

GO TO LOGS VIEWER PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/LOGS/VIEWER)

a. In the Recently selected resources drop-down list, click App Engine Application,
and then click All module_id. You see a list of requests from when you visited your
app. If you don't see a list of requests, con�rm you selected All module_id from the
drop-down list. If you see error messages printed to the Cloud Console, check that
your app's code matches the code in the section about writing the web app
 (#writing_the_web_app).

b. Make sure that the Firestore API is enabled.

runtime: go112  

gcloud app deploy  

https://PROJECT_ID.appspot.com  

https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/sessions/app.yaml
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/getting-started/sessions/app.yaml
https://console.cloud.google.com/logs/viewer

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 10/11

Cleaning up

Delete the project

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

Delete the App Engine instance

1. In the Cloud Console, go to the Versions page for App Engine.

GO TO THE VERSIONS PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APPENGINE/VERSIONS)

2. Select the checkbox for the non-default app version you want to delete.

Note: The only way you can delete the default version of your App Engine app is by deleting your

project. However, you can stop the default version in the Cloud Console

 (https://console.cloud.google.com/appengine/versions). This action shuts down all instances

associated with the version. You can restart these instances later if needed.

In the App Engine standard environment, you can stop the default version only if your app has manual

or basic scaling.

https://console.cloud.google.com/iam-admin/projects
https://console.cloud.google.com/appengine/versions
https://console.cloud.google.com/appengine/versions

1/23/2020 Handling sessions with Firestore | Go | Google Cloud

https://cloud.google.com/go/getting-started/session-handling-with-firestore 11/11

3. Click Delete to delete the app version.

What's next

Try Cloud Functions tutorials (https://cloud.google.com/functions/docs/tutorials/).

Learn more about App Engine (https://cloud.google.com/appengine/docs/).

Try Cloud Run (https://cloud.google.com/run/docs/quickstarts/prebuilt-deploy), which lets you
run stateless containers on a fully managed environment or in your own Google
Kubernetes Engine cluster.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 20, 2019.

https://cloud.google.com/functions/docs/tutorials/
https://cloud.google.com/appengine/docs/
https://cloud.google.com/run/docs/quickstarts/prebuilt-deploy
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

