
1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 1/9

This tutorial shows you how to retrieve, verify, and store third-party credentials using Identity Platform, the App Engine standard
environment, and Datastore.

This document walks you through a simple note-taking application called Firenotes that stores users' notes in their own personal notebooks.
Notebooks are stored per user, and identi�ed by each user's unique Identity Platform ID. The application has the following components:

The frontend con�gures the sign-in user interface and retrieves the Identity Platform ID. It also handles authentication state changes
and lets users see their notes.

FirebaseUI (https://github.com/�rebase/FirebaseUi-Web) is an open-source, drop-in solution thatworks with Identity Platform to simplify
implementation of complex authentication and UI tasks. The SDK handles user login, linking multiple providers to one account,
recovering passwords, and more. It implements authentication best practices for a smooth and secure sign-in experience.

The backend veri�es the user's authentication state and returns user pro�le information as well as the user's notes.

The application stores user credentials in Datastore by using the NDB client library (/appengine/docs/standard/python/ndb/), but you can store
the credentials in a database of your choice.

Firenotes is based on the Flask  (http://�ask.pocoo.org/) web application framework. The sample app uses Flask because of its simplicity and
ease of use, but the concepts and technologies explored are applicable regardless of which framework you use.

By completing this tutorial, you'll accomplish the following:

Con�gure the user interface with FirebaseUI for Identity Platform.

Obtain a Identity Platform ID token and verify it using server-side authentication.

Store user credentials and associated data in Datastore.

Query a database using the NDB client library.

Deploy an app to App Engine.

This tutorial uses billable components of Google Cloud, including:

Datastore

Identity Platform

Use the Pricing Calculator (/products/calculator/) to generate a cost estimate based on your projected usage. New Google Cloud users might
be eligible for a free trial (/free-trial).

1. Install Git  (https://git-scm.com/book/en/v2/Getting-Started-Installing-Git/), Python 2.7  (https://www.python.org/), and virtualenv
 (/python/setup#installing_and_using_virtualenv). For more information on setting up your Python development environment, such as
installing the latest version of Python, refer to Setting Up a Python Development Environment (/python/setup) for Google Cloud.

2. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

https://github.com/firebase/FirebaseUi-Web
https://cloud.google.com/appengine/docs/standard/python/ndb/
http://flask.pocoo.org/
https://cloud.google.com/products/calculator/
https://cloud.google.com/free-trial
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git/
https://www.python.org/
https://cloud.google.com/python/setup#installing_and_using_virtualenv
https://cloud.google.com/python/setup
https://accounts.google.com/Login
https://accounts.google.com/SignUp


1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 2/9



3. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you �nish

these steps, you can delete the project, removing all resources associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

4. Install and initialize the Cloud SDK (/sdk/docs/).

If you have already installed and initialized the SDK to a different project, set the gcloud project to the App Engine project ID you're using for
Firenotes. See Managing Cloud SDK Con�gurations (/sdk/docs/managing-con�gurations/) for speci�c commands to update a project with the
gcloud tool.

To download the sample to your local machine:

1. Clone the sample application repository to your local machine:

Alternatively, you can download the sample (https://github.com/GoogleCloudPlatform/python-docs-samples/archive/master.zip) as a zip �le
and extract it.

2. Navigate to the directory that contains the sample code:

To con�gure FirebaseUI for Identity Platform and enable identity providers:

1. Add Identity Platform to your app by following these steps:

a. Go to the Cloud Console (https://console.cloud.google.com/). 

Go to the Cloud Console (https://console.cloud.google.com/)

b. Select the Google Cloud project you want to use:

If you have an existing project, select it on the Select organization drop-down list at the top of the page.

If you don't have an existing Google Cloud project, create a new project (https://console.cloud.google.com/projectcreate) in the
Cloud Console.

c. Go to the Identity Platform Marketplace (https://console.cloud.google.com/marketplace/details/google-cloud-platform/customer-identity)

page in the Cloud Console. 

Go to the Identity Pla�orm Marketplace page (https://console.cloud.google.com/marketplace/details/google-cloud-platform/customer-identity)

d. On the Identity Platform Marketplace page, click Enable Customer Identity.

e. Go to the Customer Identity Users (https://console.cloud.google.com/customer-identity/users) page in the Cloud Console. 

Go to the Users page (https://console.cloud.google.com/customer-identity/users)

https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/managing-configurations/
https://github.com/GoogleCloudPlatform/python-docs-samples/archive/master.zip
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/projectcreate
https://console.cloud.google.com/marketplace/details/google-cloud-platform/customer-identity
https://console.cloud.google.com/marketplace/details/google-cloud-platform/customer-identity
https://console.cloud.google.com/customer-identity/users
https://console.cloud.google.com/customer-identity/users


1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 3/9

appengine/standard/�rebase/�renotes/frontend/main.js
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

appengine/standard/�rebase/�renotes/backend/app.yaml
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/backend/app.yaml)

ogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/backend/app.yaml)

appengine/standard/�rebase/�renotes/frontend/main.js
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

f. On the top right, click application setup details.

g. Copy the application setup details into your Web Application.

2. Edit the backend/app.yaml �le and enter your Google Cloud project ID in the environment variables:

3. In the frontend/main.js �le, con�gure the FirebaseUI login widget  (https://github.com/�rebase/FirebaseUI-Web) by selecting which
providers you want to offer your users.

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/backend/app.yaml
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/backend/app.yaml
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
https://github.com/firebase/FirebaseUI-Web


1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 4/9

4. In the Cloud Console, enable the providers you chose to keep:

a. Go to the Customer Identity Providers (https://console.cloud.google.com//customer-identity/providers) page in the Cloud Console. 

Go to the Providers page (https://console.cloud.google.com/customer-identity/providers)

b. Click Add A Provider.

c. On the Select a provider drop-down list, select the providers you want to use.

d. Next to Enabled, click the button to enable the provider.

For third-party identity providers, enter the provider ID and secret from the provider's developer site. The Firebase docs give
speci�c instructions in the "Before you begin" sections of the Facebook
 (https://�rebase.google.com/docs/auth/web/facebook-login), Twitter  (https://�rebase.google.com/docs/auth/web/twitter-login), and

GitHub  (https://�rebase.google.com/docs/auth/web/github-auth) guides.

For SAML and OIDC integrations, refer to the con�guration at your IdP.

5. Add your domain to the list of authorized domains in Identity Platform:

a. Go to the Customer Identity Settings (https://console.cloud.google.com//customer-identity/settings) page in the Cloud Console. 

Go to the Se�ings page (https://console.cloud.google.com/customer-identity/settings)

b. Under Authorized Domains, click Add Domain.

c. Enter the domain of your app in the following format:

Don't include http:// before the domain name.

1. Navigate to the backend directory and complete the application setup:

2. Install the dependencies into a lib directory in your project:

3. In appengine_config.py, the vendor.add() method registers the libraries in the lib directory.

https://console.cloud.google.com//customer-identity/providers
https://console.cloud.google.com/customer-identity/providers
https://firebase.google.com/docs/auth/web/facebook-login
https://firebase.google.com/docs/auth/web/twitter-login
https://firebase.google.com/docs/auth/web/github-auth
https://console.cloud.google.com//customer-identity/settings
https://console.cloud.google.com/customer-identity/settings


1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 5/9

appengine/standard/�rebase/�renotes/frontend/main.js
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

To run the application locally, use the App Engine local development server:

1. Add the following URL as the backendHostURL in main.js:

http://localhost:8081

2. Navigate to the root directory of the application. Then, start the development server:

3. Visit http://localhost:8080/ (http://localhost:8080/) in a web browser.

Now that you have set up a project and initialized an application for development, you can walk through the code to understand how to
retrieve and verify Identity Platform ID tokens on the server.

The �rst step in server-side authentication is retrieving an access token to verify. Authentication requests are handled with the
onAuthStateChanged() listener from Identity Platform:

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
http://localhost:8080/


1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 6/9

appengine/standard/�rebase/�renotes/frontend/main.js
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

appengine/standard/�rebase/�renotes/backend/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/backend/main.py)

oogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/backend/main.py)

When a user is signed in, the Identity Platform getToken() method in the callback returns a Identity Platform ID token in the form of a JSON
Web Token (JWT).

After a user signs in, the frontend service fetches any existing notes in the user's notebook through an AJAX GET request. This requires
authorization to access the user's data, so the JWT is sent in the Authorization header of the request using the Bearer schema:

Before the client can access server data, your server must verify the token is signed by Identity Platform. You can verify this token using the
Google Authentication Library for Python (http://google-auth.readthedocs.io/). Use the authentication library's verify_firebase_token
 (http://google-auth.readthedocs.io/en/stable/reference/google.oauth2.id_token.html#google.oauth2.id_token.verify_�rebase_token) function to verify the
bearer token and extract the claims:

Each identity provider sends a different set of claims, but each has at least a sub claim with a unique user ID and a claim that provides
some pro�le information, such as name or email, that you can use to personalize the user experience on your app.

After authenticating a user, you need to store their data for it to persist after a signed-in session has ended. The following sections explain
how to store a note as a Datastore entity and segregate entities by user ID.

You can create an entity in Datastore by declaring an NDB model class (/appengine/docs/standard/python/ndb/creating-entity-models/) with
certain properties such as integers or strings. Datastore indexes entities by kind; in the case of Firenotes, the kind of each entity is Note. For

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/backend/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/backend/main.py
http://google-auth.readthedocs.io/
http://google-auth.readthedocs.io/en/stable/reference/google.oauth2.id_token.html#google.oauth2.id_token.verify_firebase_token
https://cloud.google.com/appengine/docs/standard/python/ndb/creating-entity-models/


1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 7/9

appengine/standard/�rebase/�renotes/backend/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/backend/main.py)

oogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/backend/main.py)

appengine/standard/�rebase/�renotes/backend/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/backend/main.py)

oogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/backend/main.py)

querying purposes, each Note is stored with a key name, which is the user ID obtained from the sub claim in the previous section.

The following code demonstrates how to set properties of an entity, both with the constructor method for the model class when the entity is
created and through assignment of individual properties after creation:

To write the newly created Note to Datastore, call the put() method on the note object.

To retrieve user data associated with a particular user ID, use the NDB query() method to search the database for notes in the same entity
group. Entities in the same group, or ancestor path (/appengine/docs/standard/python/datastore/entities#Python_Ancestor_paths), share a
common key name, which in this case is the user ID.

You can then fetch the query data and display the notes in the client:

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/backend/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/backend/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/backend/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/backend/main.py
https://cloud.google.com/appengine/docs/standard/python/datastore/entities#Python_Ancestor_paths


1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 8/9

appengine/standard/�rebase/�renotes/frontend/main.js
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)

GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/�rebase/�renotes/frontend/main.js)





You have successfully integrated Identity Platform with your App Engine application. To see your application running in a live production
environment:

1. Change the backend host URL in main.js to https://backend-dot-[PROJECT_ID].appspot.com. Replace [PROJECT_ID] with your
project ID.

2. Deploy the application using the Cloud SDK command-line interface:

3. View the application live at https://[PROJECT_ID].appspot.com.

Note: Datastore indexes take a few minutes to update, so the application might not be fully functional immediately after deployment.

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial, delete your App Engine project:

The easiest way to eliminate billing is to delete the project that you created for the tutorial.

To delete the project:

Caution: Deleting a project has the following effects:

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/6f5f3bcb81779679a24e0964a6c57c0c7deabfac/appengine/standard/firebase/firenotes/frontend/main.js


1/25/2020 Authenticating users on App Engine using Identity Platform

https://cloud.google.com/identity-platform/docs/how-to-auth-users-app-engine 9/9

Everything in the project is deleted. If you used an existing project for this tutorial, when you delete it, you also delete any other work you've done

in the project.

Custom project IDs are lost. When you created this project, you might have created a custom project ID that you want to use in the future. To

preserve the URLs that use the project ID, such as an appspot.com URL, delete selected resources inside the project instead of deleting the whole

project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding project quota limits.

1. In the Cloud Console, go to the Manage resources page.

Go to the Manage resources page (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

Set up Eclipse for development on App Engine (/appengine/docs/standard/python/tools/setting-up-eclipse)

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/appengine/docs/standard/python/tools/setting-up-eclipse
https://cloud.google.com/docs/tutorials

