1/25/2020 Service discovery and DNS | Kubernetes Engine Documentation

This page describes how Google Kubernetes Engine (GKE) implements service discovery and
managed DNS. For a general overview of how DNS is used in Kubernetes clusters, see DNS for
Services and Pods (https:/kubernetes.io/docs/concepts/services-networking/dns-pod-service/).

In Kubernetes, service discovery is implemented with autogenerated service names that map to
the service's IP address. Service names follow a standard specification
(https:/github.com/kubernetes/dns/blob/master/docs/specification.md): my-svc .my-

namespace.svc.my-zone. Pods can also access external services, like example.com, through
their names. See DNS for Services and Pods

(https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/) for more information on
the behaviour of DNS in Kubernetes.

GKE provides managed DNS for resolving service names and for resolving external names. This
is implemented by kube-dns, a cluster add-on that is deployed by default in all GKE clusters.
kube-dns runs as a Deployment (/kubernetes-engine/docs/concepts/deployment) that schedules
redundant kube-dns Pods to nodes in the cluster. The kube-dns Pods are in the kube-system
namespace. The kube-dns deployment is accessed through a corresponding Service
(/kubernetes-engine/docs/concepts/service) that groups the kube-dns Pods and gives them a single
IP address. By default, all Pods in a cluster use this service to resolve DNS queries.

https://cloud.google.com/kubernetes-engine/docs/concepts/service-discovery/ 1/3


https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://cloud.google.com/kubernetes-engine/docs/concepts/deployment
https://cloud.google.com/kubernetes-engine/docs/concepts/service

1/25/2020 Service discovery and DNS | Kubernetes Engine Documentation

Cloud DNS

GKE Cluster 169.254.169.254
]
Worker Node Worker Node ]
———> kube-dns
A .
pod pod 10.0.0.10:53
¥ {
10.0.0.10:53 10.0.0.10:53
i i kube-dns-
autoscaler

kube-dns scales to serve the DNS demands of the cluster. This scaling is controlled by the
kube-dns-autoscaler which is deployed by default in all GKE clusters. kube-dns-autoscaler
adjusts the number of replicas in the kube-dns deployment based on the number of nodes and
cores in the cluster.

The kubelet agent running on each Pod configures the Pod's etc/resolv.conf to use the kube-
dns service's ClusterlP. An example of this configuration is shown below, in this example the IP
address of the kube-dns service is 10.08.0.10 (this IP address will be different in other clusters):

kube-dns is the authoritative name server for the cluster domain (cluster.local) and it
recursively resolves external names. Short names that are not fully qualified, like myservice, are
completed first with local search paths. For example, myservice.default.svc.cluster.local,

https://cloud.google.com/kubernetes-engine/docs/concepts/service-discovery/

2/3



1/25/2020 Service discovery and DNS | Kubernetes Engine Documentation

myservice.svc.cluster.local, myservice.cluster.local, myservice.c.my-project-
id.internal, and myservice.google.internal.

» Learn how to provide scalable DNS resolution using NodeLocal DNSCache
(/kubernetes-engine/docs/how-to/nodelocal-dns-cache) for clusters requiring high volumes of
DNS queries.

https://cloud.google.com/kubernetes-engine/docs/concepts/service-discovery/ 3/3


https://cloud.google.com/kubernetes-engine/docs/how-to/nodelocal-dns-cache

