
1/25/2020 Service discovery and DNS  |  Kubernetes Engine Documentation

https://cloud.google.com/kubernetes-engine/docs/concepts/service-discovery/ 1/3

This page describes how Google Kubernetes Engine (GKE) implements service discovery and
managed DNS. For a general overview of how DNS is used in Kubernetes clusters, see DNS for
Services and Pods  (https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/).

In Kubernetes, service discovery is implemented with autogenerated service names that map to
the service's IP address. Service names follow a standard speci�cation
 (https://github.com/kubernetes/dns/blob/master/docs/speci�cation.md): my-svc.my-
namespace.svc.my-zone. Pods can also access external services, like example.com, through
their names. See DNS for Services and Pods
 (https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/) for more information on

the behaviour of DNS in Kubernetes.

GKE provides managed DNS for resolving service names and for resolving external names. This
is implemented by kube-dns, a cluster add-on that is deployed by default in all GKE clusters.
kube-dns runs as a Deployment (/kubernetes-engine/docs/concepts/deployment) that schedules
redundant kube-dns Pods to nodes in the cluster. The kube-dns Pods are in the kube-system
namespace. The kube-dns deployment is accessed through a corresponding Service
 (/kubernetes-engine/docs/concepts/service) that groups the kube-dns Pods and gives them a single
IP address. By default, all Pods in a cluster use this service to resolve DNS queries.

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://cloud.google.com/kubernetes-engine/docs/concepts/deployment
https://cloud.google.com/kubernetes-engine/docs/concepts/service


1/25/2020 Service discovery and DNS  |  Kubernetes Engine Documentation

https://cloud.google.com/kubernetes-engine/docs/concepts/service-discovery/ 2/3

kube-dns scales to serve the DNS demands of the cluster. This scaling is controlled by the
kube-dns-autoscaler which is deployed by default in all GKE clusters. kube-dns-autoscaler
adjusts the number of replicas in the kube-dns deployment based on the number of nodes and
cores in the cluster.

The kubelet agent running on each Pod con�gures the Pod's etc/resolv.conf to use the kube-
dns service's ClusterIP. An example of this con�guration is shown below, in this example the IP
address of the kube-dns service is 10.0.0.10 (this IP address will be different in other clusters):

kube-dns is the authoritative name server for the cluster domain (cluster.local) and it
recursively resolves external names. Short names that are not fully quali�ed, like myservice, are
completed �rst with local search paths. For example, myservice.default.svc.cluster.local,



1/25/2020 Service discovery and DNS  |  Kubernetes Engine Documentation

https://cloud.google.com/kubernetes-engine/docs/concepts/service-discovery/ 3/3

myservice.svc.cluster.local, myservice.cluster.local, myservice.c.my-project-
id.internal, and myservice.google.internal.

Learn how to provide scalable DNS resolution using NodeLocal DNSCache
 (/kubernetes-engine/docs/how-to/nodelocal-dns-cache) for clusters requiring high volumes of
DNS queries.

https://cloud.google.com/kubernetes-engine/docs/how-to/nodelocal-dns-cache

