
1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 1/13

roduct or feature is in a pre-release state and might change or have limited support. For more information, see the product launch stages

ducts/#product-launch-stages).

This tutorial walks you through con�guring a deployment of NGINX with Application Delivery. The deployment runs on two
environments, staging and prod. The prod environment uses regular con�guration, while staging uses a slightly modi�ed one.

For more information on Application Delivery, see the Concept document
 (/kubernetes-engine/docs/concepts/add-on/application-delivery).

To complete this tutorial, you will need the following:

Git installed locally.

A GitHub or GitLab account with permissions to create a private repository. Application Delivery supports only GitHub and
GitLab repositories.

A cluster running GKE 1.15 or higher.

A user with clusterAdmin (/kubernetes-engine/docs/how-to/iam#prede�ned) privileges.

Before you start, make sure you have performed the following tasks:

Ensure that you have enabled the Google Kubernetes Engine API.

Enable Google Kubernetes Engine API (https://console.cloud.google.com/apis/library/container.googleapis.com?q=kubernetes%20engine)

Ensure that you have installed the Cloud SDK (/sdk/downloads).

Set up default gcloud settings using one of the following methods:

Using gcloud init, if you want to be walked through setting defaults.

Using gcloud config, to individually set your project ID, zone, and region.

https://cloud.google.com/products/#product-launch-stages
https://cloud.google.com/kubernetes-engine/docs/concepts/add-on/application-delivery
https://cloud.google.com/kubernetes-engine/docs/how-to/iam#predefined
https://console.cloud.google.com/apis/library/container.googleapis.com?q=kubernetes%20engine
https://cloud.google.com/sdk/downloads


1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 2/13

Add SSH keys to your GitHub  (https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-account) or GitLab
 (https://docs.gitlab.com/ee/gitlab-basics/create-your-ssh-keys.html) account.

Test your keys with ssh:

https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-account
https://docs.gitlab.com/ee/gitlab-basics/create-your-ssh-keys.html


1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 3/13

You might be asked to con�rm connection details or your key passphrase. If the connection succeeds, a message is printed
on the terminal.

To use Application Delivery, you can create (#create) a new cluster with it enabled, or enable (#enable) it on an existing GKE cluster
running version 1.15 and higher. Then, you install appctl, the Application Delivery command line tool.

You can create a new cluster with Application Delivery enabled using gcloud or the Google Cloud Console.

You can enable Application Delivery on an existing using gcloud or the Google Cloud Console.



1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 4/13

To check the status of your Application Delivery installation, run the following kubectl commands.

When Application Delivery is running, both commands return that there is exactly one pod with a STATUS of Running.

You install appctl, the Application Delivery command line tool, with gcloud.

After enabling Application Delivery on a cluster and installing appctl, you are ready to deploy your �rst application.

The following sections describe how to:

1. Create git repositories with appctl.

2. Create a base con�guration.

3. Create one or more environments for your deployment.



1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 5/13

4. Optionally, apply con�guration overlays to your environments in your application repository.

5. Create a release candidate in the form of a pull or merge request.

6. Deploy your release.

You create repositories for Application Delivery on GitHub or GitLab or with appctl.

1. Change to the directory where you would like to create your application directory.

2. Create your Application Delivery repositories with appctl.

appctl prompts you to con�rm your new private repositories.

Git might prompt you for additional login information.

appctl creates two remote private git repositories:

The application repository github.com/[USER_NAME]/[APPLICATION_NAME]. This repository is cloned to the current
directory.

The deployment repository github.com/[USER_NAME]/[APPLICATION_NAME]-deployment.

For more information on the content and structure of these repositories, see the Application delivery
 (/kubernetes-engine/docs/concepts/add-on/application-delivery) concept guide.

https://cloud.google.com/kubernetes-engine/docs/concepts/add-on/application-delivery


1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 6/13

1. Change your working directory to your application repository. For example, if you used the application name myapp, run

2. Create the con�guration for your Kubernetes workload. This can be any valid Kubernetes deployment.

The following con�guration de�nes an application named nginx, which deploys 3 replicas of the nginx container. Copy the
con�guration into the �le config/base/myapp.yaml . If you would like to enable a LoadBalancer, uncomment the line type:
LoadBalancer.

3. Con�gure Application Delivery to apply this con�guration to the base. Paste the following into
config/base/kustomization.yaml.



1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 7/13



1. From your application repository directory, test your con�guration with kubectl apply -k:

If your con�guration is valid, kubectl prints the YAML that will be deployed to your cluster when it is applied.

2. After you have validated your YAML, create and push a commit in your application repository.

Application Delivery deploys your application into environments. You add environments for your releases with appctl.

1. Change to your application repository root directory (for example, cd myapp).

2. Create your environment with appctl

appctl creates a git commit containing a scaffolded Kustomize con�guration.

For example, to add the staging and prod environments to the cluster application-cluster, run the following command:

Note: appctl may prompt you for an access token for your Git repository.

3. Optionally, you can see the changes Application Delivery made in your Git repository with git log.

4. Push the con�guration to your application repository.



1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 8/13





1. Open the GitHub or GitLab page for your deployment repository. For example, if your GitHub username is octocat and you
created an application named myapp, the URL is https://github.com/octocat/myapp-deployment. From this page, you can
see the branches that were created for each environment.

To deploy an environment with Application Delivery, you:

1. Create a version with git tag and push that tag.

Note: We recommend you use Semantic Versioning  (https://semver.org/) for your version numbers. This allows you to sort versions easily on

GitHub or GitLab pages.

For example, to push version v0.1.0, run the following commands:

2. Use appctl prepare to nominate the currently tagged version and generate a pull request in the deployment repository for
review.

Note: appctl prepare resets your kubeconfig, including the default context and Namespace. If you have changed your default context,

you will need to re-apply this change after using appctl.

For example, to use the staging environment, run the following command:

If appctl completed the commit to the deployment repository, it prints a URL to create a pull request.

Open the URL in your browser. The Comparing Changes screen (in GitHub) or the New Merge Request screen (in GitLab)
appears.

3. Use GitHub  (https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/merging-a-pull-request) or GitLab
 (https://docs.gitlab.com/ee/user/project/merge_requests/#creating-merge-requests) to review and approve the pull request.

https://semver.org/
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/merging-a-pull-request
https://docs.gitlab.com/ee/user/project/merge_requests/#creating-merge-requests


1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 9/13

 Caution: When merging pull requests on GitHub or GitLab, use a merge commit. Application Delivery cannot identify "Squash and merge" or

"Rebase and merge" commits.

4. After the pull request has been approved, use appctl apply to complete the deployment.

For example, to deploy changes to the staging environment, run the following:

5. Con�rm that your application is running with kubectl or from the Google Cloud Console.

1. To promote a release candidate from one environment to another, run the following command:

Where [TARGET_ENVIRONMENT_NAME] is the name of the environment that you wish to deploy the release candidate currently
running on [SOURCE_ENVIRONMENT_NAME].

For example, to promote staging to prod run:



1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 10/13



2. Use GitHub or GitLab to review and approve the pull request.

3. To deploy the release candidate to the target environment, run the following command:

For example, to deploy to the prod environment, run:

This section assumes you have a staging environment con�gured as in the previous steps (#deploying_an_application). You may
need to adapt these instructions for your use.

In this section, you change the parameters for the staging environment using a kustomize overlay
 (https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/#bases-and-overlays). After making the change, you push
and tag your changes in git. Application Delivery will update your cluster.

1. Create the �le config/envs/staging/patch-replicas.yaml, and copy the following text into it. This updates the
con�guration in the staging environment to run one replica instead of three replicas.

Note: The apiVersion, kind, and metadata.name values are required.

2. Edit config/envs/staging/kustomization.yaml and add patch-replicas.yaml to a new collection named
patchesStrategicMerge.

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/#bases-and-overlays


1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 11/13

You can also add environment-speci�c annotations
 (https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/) in this overlay. The following example adds an
annotation named oncall-team to add all resources under this environment. For more information, see Kustomize �le �elds
 (https://github.com/kubernetes-sigs/kustomize/blob/v2.1.0/docs/�elds.md).

3. Test your con�guration with kubectl apply -k:

4. Add and commit your changes.

Where [COMMIT_MESSAGE] is a message that describes your changes.

5. Create a version with git tag and push it.

6. Use appctl prepare to generate a pull request in the deployment repository for review.

7. Follow the link to create a GitHub or GitLab pull request.

8. Look over the contents of your pull request. Application Delivery makes a one-line change that sets the value of replicas to
1.

9. Approve the pull request with GitHub or GitLab

10. Use appctl apply to apply the changes.

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://github.com/kubernetes-sigs/kustomize/blob/v2.1.0/docs/fields.md


1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 12/13

You can use appctl apply to roll back to a previous release.

Where [TARGET_ENVIRONMENT_NAME] is the name of the environment that you wish to deploy the release tagged with [GIT_TAG].

The appctl tool is interactive, expects for user input, by default. If you want to run appctl in a script, container, or pipelines, set the
environment variable APPCTL_INTERACTIVE to false.

For example, in the bash shell, run the following command.

Information on speci�c appctl commands is available with appctl help [COMMAND]. For example, to get help with appctl
prepare, run appctl help prepare .

To remove the application running in your cluster, you delete all Namespaces created with new environments. For all of your
environments and clusters, repeat the following commands:

1. Switch to the cluster for a given environment

2. Delete the namespace where your application for this environment is running

Where [APPLICATION_NAME] is the name of your application repository, and [ENVIRONMENT_NAME] is your environment name.

3. From GitHub or GitLab, delete the two git repositories created by appctl.

4. Delete your local application directory:

5. You can disable Application Delivery in your cluster from gcloud or the Google Cloud Console:



1/25/2020 Managing Applications with Application Delivery

https://cloud.google.com/kubernetes-engine/docs/how-to/add-on/application-delivery/ 13/13

Read more about Kustomize (https://kubectl.docs.kubernetes.io/pages/examples/kustomize.html).

https://kubectl.docs.kubernetes.io/pages/examples/kustomize.html

