
1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 1/17

This page explains how to use container-native load balancing in Google Kubernetes Engine.

Container-native load balancing enables HTTP(S) load balancers (/load-balancing/docs) to target Pods
directly and to evenly distribute their tra�c to Pods.

Container-native load balancing leverages a data model called network endpoint groups (NEGs)
 (/load-balancing/docs/negs), collections of network endpoints represented by IP-port pairs.

Container-native load balancing offers the following bene�ts:

Pods are �rst-class citizens for load balancing

kube-proxy  (https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/) con�gures

nodes' iptables rules to distribute tra�c to Pods. Without container-native load balancing, load balancer

tra�c travels to the node instance groups and gets routed via iptables rules to Pods which might or might

not be in the same node. With container-native load balancing, load balancer tra�c is distributed directly to

the Pods which should receive the tra�c, eliminating the extra network hop. Container-native load balancing

also helps with improved health checking since it targets Pods directly.

VM1

Load 
Balancer

Instance Group

iptables

Pod 1 Pod 2

VM2

iptables

Pod 3 Pod 4 Pod 5

VM1

Load 
Balancer

Network Endpoint Group (NEG)

Pod 1 Pod 2

VM2

Pod 3 Pod 4 Pod 5

https://cloud.google.com/load-balancing/docs
https://cloud.google.com/load-balancing/docs/negs
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 2/17

Diagram comparing default behavior (left) with container-native load balancer behavior.

Improved network performance

Because the container-native load balancer talks directly with the Pods, and connections have fewer network

hops, both latency and throughput are improved.

Increased visibility

With container-native load balancing, you have visibility into the round-trip time (RTT) from the client to the

HTTP(S) load balancer, including Stackdriver UI support. This makes troubleshooting your services at the

NEG-level easier.

Support for HTTP(S) Load Balancing features

Container-native load balancing offer native support in Google Kubernetes Engine for several features of

HTTP(S) Load Balancing, such as integration with GCP services like Google Cloud Armor

 (/kubernetes-engine/docs/how-to/cloud-armor-backendcon�g), Cloud CDN

 (/kubernetes-engine/docs/how-to/cdn-backendcon�g), and Identity-Aware Proxy

 (/iap/docs/enabling-kubernetes-howto). It also features load balancing algorithms for accurate tra�c

distribution.

Support for Tra�c Director

The NEG data model is required to use Tra�c Director (/tra�c-director/docs), Google Cloud's fully managed

tra�c control plane for service mesh.

For relevant Pods, the corresponding Ingress controller manages a readiness gate
 (https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate) of type
cloud.google.com/load-balancer-neg-ready. The Ingress controller polls the load balancer's health
check status (/load-balancing/docs/health-check-concepts), which includes the health of all endpoints in
the NEG. When the load balancer's health check status indicates that the endpoint corresponding to a
particular Pod is healthy, the Ingress controller sets the Pod's readiness gate value to True. The
kubelet running on each Node then computes the Pod's effective readiness, considering both the
value of this readiness gate and, if de�ned, the Pod's readiness probe

https://cloud.google.com/kubernetes-engine/docs/how-to/cloud-armor-backendconfig
https://cloud.google.com/kubernetes-engine/docs/how-to/cdn-backendconfig
https://cloud.google.com/iap/docs/enabling-kubernetes-howto
https://cloud.google.com/traffic-director/docs
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate
https://cloud.google.com/load-balancing/docs/health-check-concepts
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 3/17

 (https://kubernetes.io/docs/tasks/con�gure-pod-container/con�gure-liveness-readiness-probes/#de�ne-
readiness-probes)

.

For container-native load balancing, Pod readiness gates are automatically enabled in:

v1.13 GKE clusters running v1.13.8 and higher

v1.14 GKE clusters running v1.14.4 and higher

Readiness gates control the rate of a rolling update. GKE versions listed above automatically add
readiness gates to Pods. When you initiate a rolling update, as GKE creates new Pods, an endpoint
for each new Pod is added to a NEG. When the endpoint is healthy from the perspective of the load
balancer, the Ingress controller sets the readiness gate to True. Thus, a newly created Pod must at
least pass its readiness gate before GKE removes an old Pod. This ensures that the corresponding
endpoint for the Pod has already passed the load balancer's health check and that the backend
capacity is maintained.

If a Pod's readiness gate never indicates that the Pod is ready, due to a bad container image or a
miscon�gured load balancer health check, the load balancer won't direct tra�c to the new Pod. If
such a failure occurs while rolling out an updated Deployment, the rollout stalls after attempting to
create one new Pod because that Pod's readiness gate is never True. See the troubleshooting section
 (/kubernetes-engine/docs/how-to/container-native-load-balancing#stalled_rollout) for information on how to
detect and �x this situation.

Without container-native load balancing and readiness gates, GKE can't detect if a load balancer's
endpoints are healthy before marking Pods as ready. In previous Kubernetes versions, you control the
rate that Pods are removed and replaced by specifying a delay period (minReadySeconds in the
Deployment speci�cation).

Container-native load balancers on Google Kubernetes Engine have the following requirements:

Google Kubernetes Engine v1.13.8 or v1.14.4

Container-native load balancers are generally available in:

v1.13 GKE clusters running v1.13.8 and higher

v1.14 GKE clusters running v1.14.4 and higher

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 4/17

VPC-native

To use container-native load balancing, clusters must be VPC-native. To learn more, refer to Creating VPC-

native clusters using Alias IPs (/kubernetes-engine/docs/how-to/alias-ips).

HTTP load balancing

To use container-native load balancing, your cluster must have HTTP load-balancing enabled. GKE clusters

have HTTP load-balancing enabled by default; you must not disable it.

Container-native load balancers do not work with legacy networks (/vpc/docs/legacy).

Container-native load balancers do not support internal load balancers or network load balancers.

You are charged for the HTTP(S) load balancer provisioned by the Ingress that you create in this
guide. For load balancer pricing information, refer to Load balancing and forwarding rules
 (/compute/pricing#lb) on the Compute Engine pricing page.

The following sections walk you through a container-native load balancing con�guration on Google
Kubernetes Engine.

To use container-native load balancing, you must create a cluster with alias IPs
 (/kubernetes-engine/docs/how-to/alias-ips#procedures) enabled.

For example, the following command creates a cluster, neg-demo-cluster, with an auto-provisioned
subnetwork in zone us-central1-a:

https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips
https://cloud.google.com/vpc/docs/legacy
https://cloud.google.com/compute/pricing#lb
https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips#procedures


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 5/17

Next, deploy a workload to the cluster.

The following sample Deployment (/kubernetes-engine/docs/concepts/deployment), neg-demo-app, runs a
single instance of a containerized HTTP server. We recommend you use workloads that use Pod
Readiness feedback. See the Pod readiness section (#pod_readiness) above for more information and
for GKE version requirements.

https://cloud.google.com/kubernetes-engine/docs/concepts/deployment


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 6/17

In this Deployment, each container runs an HTTP server. The HTTP server simply returns the
hostname of the application server (the name of the Pod on which the server runs) as a response.

Save this manifest as neg-demo-app.yaml, then create the Deployment by running the following
command:

After you have created a Deployment, you need to group its Pods into a Service
 (https://kubernetes.io/docs/concepts/services-networking/service/).

https://kubernetes.io/docs/concepts/services-networking/service/


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 7/17

The following sample Service, neg-demo-svc, targets the sample Deployment you created in the
previous section:

The Service's annotation, cloud.google.com/neg: '{"ingress": true}', enables container-native
load balancing. However, the load balancer is not created until you create an Ingress (#create_ingress)

for the Service.

Save this manifest as neg-demo-svc.yaml, then create the Service by running the following
command:

The following sample Ingress  (https://kubernetes.io/docs/concepts/services-networking/ingress/), neg-
demo-ing, targets the Service you created:

https://kubernetes.io/docs/concepts/services-networking/ingress/


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 8/17

Save this manifest as neg-demo-ing.yaml, then create the Ingress by running the following
command:

Upon creating the Ingress, an HTTP(S) load balancer is created in the project, and NEGs are created
in each zone in which the cluster runs. The endpoints in the NEG and the endpoints of the Service are
kept in sync.

After you have deployed a workload, grouped its Pods into a Service, and created an Ingress for the
Service, you should verify that the Ingress has provisioned the container-native load balancer
successfully.

To retrieve the status of the Ingress, run the following command:

In the command output, look for ADD and CREATE events:

The following sections explain how you can test the functionality of a container-native load balancer.



1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 9/17

Wait several minutes for the HTTP(S) load balancer to be con�gured.

You can verify that the container-native load balancer is functioning by visiting the Ingress' IP
address.

To get the Ingress IP address, run the following command:

In the command output, the Ingress' IP address is displayed in the ADDRESS column. Visit the IP
address in a web browser.

You can also get the health status of the load balancer's backend service
 (/load-balancing/docs/backend-service).

First, get a list of the backend services running in your project:

Copy of the name of the backend that includes the name of the Service, such as neg-demo-svc. Then,
get the health status of the backend service:

Another way you can test that the load balancer functions as expected is by scaling the sample
Deployment, sending test requests to the Ingress, and verifying that the correct number of replicas
respond.

The following command scales the neg-demo-app Deployment from one instance to two instances:

https://cloud.google.com/load-balancing/docs/backend-service


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 10/17

Wait a few minutes for the rollout to complete. To verify that the rollout is complete, run the following
command:

In the command output, verify that there are two available replicas:

Then, run the following command to count the number of distinct responses from the load balancer:

where [IP_ADDRESS] is the Ingress' IP address. You can get the Ingress' IP address from kubectl
describe ingress neg-demo-ing.

If this command returns a 404 error, wait a few minutes for the load balancer to come up, then try again.

In the command output, observe that the number of distinct responses is the same as the number of
replicas, indicating that all backend Pods are serving tra�c:

After completing the tasks on this page, follow these steps to remove the resources to prevent
unwanted charges incurring on your account:



1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 11/17

Use the techniques below to verify your networking con�guration. The following sections explain how
to resolve speci�c issues related to container-native load balancing.

See the load balancing documentation (/load-balancing/docs/negs/setting-up-negs#listing-negs) for
how to list your network endpoint groups.

You can �nd the name and zones of the NEG that corresponds to a service in the neg-status
annotation of the service. Get the Service speci�cation with:

The metadata:annotations:cloud.google.com/neg-status annotation lists the name of
service's corresponding NEG and the zones of the NEG.

You can check the health of the backend service that corresponds to a NEG with the following
command:

https://cloud.google.com/load-balancing/docs/negs/setting-up-negs#listing-negs


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 12/17

The backend service has the same name as its NEG.

To print a service's event logs:

The service's name string includes the name and namespace of the corresponding GKE Service.

Symptoms

When you attempt to create a cluster with alias IPs, you might encounter the following error:

Potential causes

You encounter this error if you attempt to create a cluster with alias IPs that also uses a legacy network.

Resolution

Ensure that you do not create a cluster with alias IPs and a legacy network enabled simultaneously. For more

information about using alias IPs, refer to Creating VPC-native clusters using Alias IPs

 (/kubernetes-engine/docs/how-to/alias-ips).

Symptoms

502 errors or rejected connections.

Potential causes

https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 13/17

New endpoints generally become reachable after attaching them to the load balancer, provided that they

respond to health checks. You might encounter 502 errors or rejected connections if tra�c cannot reach the

endpoints.

502 errors and rejected connections can also be caused by a container that doesn't handle SIGTERM. If a

container doesn't explicitly handle SIGTERM, it immediately terminates and stops handling requests. The load

balancer continues to send incoming tra�c to the terminated container, leading to errors.

Resolution

Con�gure containers to handle SIGTERM and continue responding to requests throughout the termination

grace period (30 seconds by default). Con�gure Pods to begin failing health checks when they receive

SIGTERM. This signals the load balancer to stop sending tra�c to the Pod while endpoint deprograming is in

progress.

See the documentation on Pod termination

 (https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods) and this post about

Pod termination best practices

 (https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-terminating-with-grace) for more

information.

To troubleshoot tra�c not reaching the endpoints, verify that �rewall rules allow incoming TCP tra�c to your

endpoints in the 130.211.0.0/22 and 35.191.0.0/16 ranges. To learn more, refer to Adding Health

Checks (/load-balancing/docs/health-checks) in the Cloud Load Balancing documentation.

View the backend services in your project. The name string of the relevant backend service includes the name

and namespace of the corresponding Google Kubernetes Engine Service:

Retrieve the backend health status from the backend service:

https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-terminating-with-grace
https://cloud.google.com/load-balancing/docs/health-checks


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 14/17

If all backends are unhealthy, your �rewall, Ingress, or Service might be miscon�gured.

If some backends are unhealthy for a short period of time, network programming latency might be the cause.

If some backends do not appear in the list of backend services, programming latency might be the cause. You

can verify this by running the following command, where [NEG] is the name of the backend service. (NEGs

and backend services share the same name):

Check if all the expected endpoints are in the NEG.

Symptoms

Rolling out an updated Deployment stalls, and the number of up-to-date replicas does not match the desired

number of replicas.

Potential causes

The deployment's health checks are failing. The container image might be bad or the health check might be

miscon�gured. The rolling replacement of Pods waits until the newly started Pod passes its Pod readiness

gate  (https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate). This only

occurs if the Pod is responding to load balancer health checks. If the Pod does not respond, or if the health

check is miscon�gured, the readiness gate conditions can't be met and the rollout can't continue.

If you're using kubectl 1.13 or higher, you can check the status of a Pod's readiness gates with the following

command:

Check the READINESS GATES column.

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 15/17

This column doesn't exist in kubectl 1.12 and lower. A Pod that is marked as being in the READY state may

have a failed readiness gate. To verify this, use the following command:

The readiness gates and their status are listed in the output.

Resolution

Verify that the container image in your Deployment's Pod speci�cation is functioning correctly and is able to

respond to health checks. Verify that the health checks are correctly con�gured.

Container-native load balancing on Google Kubernetes Engine has the following known issues:

Google Kubernetes Engine garbage collects container-native load balancers every two minutes. If a
cluster is deleted before load balancers are fully removed, you need to manually delete the load
balancer's NEGs.

View the NEGs in your project by running the following command:

In the command output, look for the relevant NEGs.

To delete a NEG, run the following command, where [NEG] is the name of the NEG:



1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 16/17

This issue does not occur in clusters that use Pod readiness feedback to manage workload rollouts. See the Pod read

n (#pod_readiness) for more information.

When you deploy a workload to your cluster, or when you update an existing workload, the container-
native load balancer can take longer to propagate new endpoints than it takes to �nish the workload
rollout. The sample Deployment that you deploy in this guide uses two �elds to align its rollout with
the propagation of endpoints: terminationGracePeriodSeconds and minReadySeconds.

terminationGracePeriodSeconds
 (https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods) allows the Pod to shut

down gracefully by waiting for connections to terminate after a Pod is scheduled for deletion.

minReadySeconds
 (https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#min-ready-seconds) adds a latency

period after a Pod is created. You specify a minimum number of seconds for which a new Pod
should be in Ready status
 (https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-conditions), without any of its

containers crashing, for the Pod to be considered available.

You should con�gure your workloads' minReadySeconds and terminationGracePeriodSeconds values
to be 60 seconds or higher to ensure that the service is not disrupted due to workload rollouts.

terminationGracePeriodSeconds is available in all Pod speci�cations, and minReadySeconds is
available for Deployments and DaemonSets.

To learn more about �ne-tuning rollouts, refer to RollingUpdateStrategy
 (https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy).

Learn more about NEGs (/load-balancing/docs/negs).

Learn more about VPC-native clusters (/kubernetes-engine/docs/how-to/alias-ips).

Learn more about HTTP(S) Load Balancing (/load-balancing/docs).

Watch a KubeCon talk about Pod readiness gates
 (https://www.youtube.com/watch?v=Vw9GmSeomFg).

https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#min-ready-seconds
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-conditions
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://cloud.google.com/load-balancing/docs/negs
https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips
https://cloud.google.com/load-balancing/docs
https://www.youtube.com/watch?v=Vw9GmSeomFg


1/25/2020 Using container-native load balancing

https://cloud.google.com/kubernetes-engine/docs/how-to/container-native-load-balancing 17/17


