
1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 1/9

Google Kubernetes Engine (GKE)

Documentation Guides

This page shows how to use Kubernetes Ingress
 (https://kubernetes.io/docs/concepts/services-networking/ingress/) and Service
 (https://kubernetes.io/docs/concepts/services-networking/service/) objects to con�gure an HTTP(S)

load balancer (https://cloud.google.com/load-balancing/docs/https/) to use HTTP/2
 (https://http2.github.io/) for communication with backend services. This feature is available

starting with Google Kubernetes Engine version 1.11.2.

Overview

An HTTP(S) load balancer acts as a proxy between your clients and your application. Clients
can use HTTP/1.1 or HTTP/2 to communicate with the load balancer proxy. However, the
connection from the load balancer proxy to your application uses HTTP/1.1 by default. If your
application, running in a Google Kubernetes Engine pod, is capable of receiving HTTP/2
requests, you con�gure the load balancer to use HTTP/2 when it forwards requests to your
application.

 (https://cloud.google.com/kubernetes-engine/)

 (https://cloud.google.com/kubernetes-engine/docs/)

HTTP/2 for load balancing with Ingress

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/kubernetes-engine/docs/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/
https://cloud.google.com/load-balancing/docs/https/
https://http2.github.io/

1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 2/9

 (https://cloud.google.com/kubernetes-engine/images/ingress-http2.svg)

In this exercise, you create a Deployment, a Service, and an Ingress. You put a
cloud.google.com/app-protocols annotation in your Service manifest to specify that the load
balancer should use HTTP/2 to communicate with your application. Then you call your service
and verify that your application received an HTTP/2 request.

Before you begin

To prepare for this task, perform the following steps:

Ensure that you have enabled the Google Kubernetes Engine API.

ENABLE GOOGLE KUBERNETES ENGINE API (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APIS/LIBRAR

Ensure that you have installed the Cloud SDK (https://cloud.google.com/sdk/downloads).

https://cloud.google.com/kubernetes-engine/images/ingress-http2.svg
https://console.cloud.google.com/apis/library/container.googleapis.com?q=kubernetes%20engine
https://cloud.google.com/sdk/downloads

1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 3/9



Set your default project ID (https://support.google.com/cloud/answer/6158840):

If you are working with zonal clusters, set your default compute zone
 (https://cloud.google.com/compute/docs/zones#available):

If you are working with regional clusters, set your default compute region
 (https://cloud.google.com/compute/docs/zones#available):

Update gcloud to the latest version:

Note: You can override these default settings in gcloud commands using the --project, --zone,

and --region operational �ags.

Read about the Kubernetes Ingress
 (https://kubernetes.io/docs/concepts/services-networking/ingress/) and Service
 (https://kubernetes.io/docs/concepts/services-networking/service/) resources.

Creating the Deployment

This Deployment manifest declares that you want to run two replicas of the echoheaders web
application:

gcloud config set project [PROJECT_ID]  

gcloud config set compute/zone [COMPUTE_ZONE]  

gcloud config set compute/region [COMPUTE_REGION]  

gcloud components update  

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: echoheaders
spec:
 replicas: 2
 template:
 metadata:

 

https://support.google.com/cloud/answer/6158840
https://cloud.google.com/compute/docs/zones#available
https://cloud.google.com/compute/docs/zones#available
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/

1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 4/9

Copy the manifest to a �le named my-deployment.yaml, and create the Deployment:

Creating the Service

Here's a manifest for the Service:

Save the manifest to a �le named my-service.yaml, and create the Service:

View the Service:

 labels:
 app: echoheaders
 spec:
 containers:
 - name: echoheaders
 image: k8s.gcr.io/echoserver:1.10
 ports:
 - containerPort: 8443

kubectl apply -f my-deployment.yaml  

apiVersion: v1
kind: Service
metadata:
 annotations:
 cloud.google.com/app-protocols: '{"my-port":"HTTP2"}'
 name: echoheaders
 labels:
 app: echoheaders
spec:
 type: NodePort
 ports:
 - port: 443
 targetPort: 8443
 protocol: TCP
 name: my-port
 selector:
 app: echoheaders

 

kubectl apply -f my-service.yaml  

1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 5/9

The output is similar to this:

For the purpose of this exercise, here are the important things to note about your Service:

The Service has type NodePort. This type is required for Services that are going to be
associated with an Ingress.

Any Pod that has the label app: echoheaders is a member of the Service. The selector
�eld speci�es this.

The Service has one port, and the port is named my-port. The cloud.google.com/app-
protocols annotation speci�es that my-port should use the HTTP/2 protocol.

Tra�c directed to the service on TCP port 443 is routed to TCP port 8443 in one of the
member Pods. The port and targetPort �elds specify this.

kubectl get service echoheaders --output yaml  

apiVersion: v1
kind: Service
metadata:
 annotations:
 cloud.google.com/app-protocols: '{"my-port":"HTTP2"}'
 ...
 labels:
 app: echoheaders
 name: echoheaders
 ...
spec:
 clusterIP: 10.39.251.148
 ...
 ports:
 - name: my-port
 nodePort: 30647
 port: 443
 protocol: TCP
 targetPort: 8443
 selector:
 app: echoheaders
 ...
 type: NodePort
...



1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 6/9

Creating the Ingress

Here's a manifest for the Ingress:

Copy the manifest to a �le named my-ingress.yaml, and create the Ingress:

Wait a few minutes for the Kubernetes Ingress controller to con�gure an HTTP(S) load balancer,
and then view the Ingress:

The output is similar to this:

For the purpose of this exercise, here are the important things to note about your Ingress:

The IP address for incoming tra�c is listed under loadBalancer:ingress.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: echomap
spec:
 backend:
 serviceName: echoheaders
 servicePort: 443

 

kubectl apply -f my-ingress.yaml  

kubectl get ingress echomap --output yaml  

kind: Ingress
metadata:
 ...
 name: echomap
 ...
spec:
 backend:
 serviceName: echoheaders
 servicePort: 443
status:
 loadBalancer:
 ingress:
 - ip: 203.0.113.2



1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 7/9

Incoming requests are routed to a Pod that is a member of the echoheaders Service. In
this exercise, the member pods have the label app: echoheaders.

Requests are routed to the Pod on the target port speci�ed in the echoheaders Service
manifest. In this exercise, the Pod target port is 8443.

Verifying that your load balancer suppo�s HTTP/2

1. List your backend services:

2. Describe your backend service:

where [BACKEND_SERVICE_NAME] is the name of your backend service.

3. In the output, verify that the protocol is HTTP/2:

Calling your service

Wait a few minutes for the load balancer and backend service to be con�gured. Enter the
external IP address of your load balancer in your browser's address bar.

The output shows information about the request from the load balancer to the Pod:

GCLOUD CONSOLE

gcloud compute backend-services list  

gcloud beta compute backend-services describe [BACKEND_SERVICE_NAME] --global 

backends:
...
description: '{...,"kubernetes.io/service-port":"443","x-features":["HTTP2"]}
...
kind: compute#backendService
loadBalancingScheme: EXTERNAL
protocol: HTTP2
...

 

1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 8/9

For the purpose of this exercise, here are the important things to note about the preceding
output:

The line request_version=2 indicates that the request between the load balancer and the
Pod used HTTP/2.

The line x-forwarded-proto=http indicates that the request between you and the load
balancer used HTTP 1.1, not HTTP/2.

What's next?

Set up HTTP load balancing with Ingress
 (https://cloud.google.com/kubernetes-engine/docs/tutorials/http-balancer).

Con�gure a static IP and domain name
 (https://cloud.google.com/kubernetes-engine/docs/tutorials/con�guring-domain-name-static-ip) for
your Ingress application using Ingress.

Con�gure SSL certi�cates
 (https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-multi-ssl) for your Ingress load
balancer.

If you have an application running on multiple Google Kubernetes Engine clusters in
different regions, con�gure a multi-cluster Ingress

Hostname: echoheaders-7886d5bc68-xnrwj
...
Request Information:
 ...
 method=GET
 real path=/
 query=
 request_version=2
 request_scheme=https
 ...

Request Headers:
 ...
 x-forwarded-for=[YOUR_IP_ADDRESS], 203.0.113.2
 x-forwarded-proto=http
...



https://cloud.google.com/kubernetes-engine/docs/tutorials/http-balancer
https://cloud.google.com/kubernetes-engine/docs/tutorials/configuring-domain-name-static-ip
https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-multi-ssl
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-ingress

1/25/2020 HTTP/2 for load balancing with Ingress | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-http2 9/9

 (https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-ingress) to route tra�c to
a cluster in the region closest to the user.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-ingress
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

