
1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 1/11

Google Kubernetes Engine (GKE)

Documentation Guides

Beta

This product or feature is in a pre-release state and might change or have limited support. For more

information, see the product launch stages (https://cloud.google.com/products/#product-launch-stages).

This page describes how to use GKE Sandbox
 (https://cloud.google.com/kubernetes-engine/docs/concepts/sandbox-pods) to protect the host kernel
on your nodes when containers in the Pod execute unknown or untrusted code, or need extra
isolation from the node.

Enabling GKE Sandbox

You can enable GKE Sandbox on a new cluster or an existing cluster.

Before you begin

To prepare for this task, perform the following steps:

Ensure that you have enabled the Google Kubernetes Engine API.

ENABLE GOOGLE KUBERNETES ENGINE API (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APIS/LIBRAR

Ensure that you have installed the Cloud SDK (https://cloud.google.com/sdk/downloads).

Set your default project ID (https://support.google.com/cloud/answer/6158840):

If you are working with zonal clusters, set your default compute zone
 (https://cloud.google.com/compute/docs/zones#available):

 (https://cloud.google.com/kubernetes-engine/)

 (https://cloud.google.com/kubernetes-engine/docs/)

Running workloads with GKE Sandbox

gcloud config set project [PROJECT_ID]  

gcloud config set compute/zone [COMPUTE_ZONE]  

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/products/#product-launch-stages
https://cloud.google.com/kubernetes-engine/docs/concepts/sandbox-pods
https://console.cloud.google.com/apis/library/container.googleapis.com?q=kubernetes%20engine
https://cloud.google.com/sdk/downloads
https://support.google.com/cloud/answer/6158840
https://cloud.google.com/compute/docs/zones#available

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 2/11



If you are working with regional clusters, set your default compute region
 (https://cloud.google.com/compute/docs/zones#available):

Update gcloud to the latest version:

Note: You can override these default settings in gcloud commands using the --project, --zone,

and --region operational �ags.

GKE Sandbox requires GKE v1.12.7-gke.17 or higher, or v1.13.5-gke.15 or higher, for the
cluster master and nodes.

Ensure that the gcloud command is version 243.0.0 or higher.

On a new cluster

To enable GKE Sandbox, you con�gure a node pool. The default node pool (the �rst node pool
in your cluster, created when the cluster is created) cannot use GKE Sandbox. To enable GKE
Sandbox during cluster creation, you must add a second node pool when you create the cluster.

To view your clusters, visit the Google Kubernetes Engine menu in Cloud Console.

1. Visit the Google Kubernetes Engine menu in Cloud Console.

VISIT THE GOOGLE KUBERNETES ENGINE MENU (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/KUBER

2. Click Create cluster.

3. Choose the Standard cluster template or choose an appropriate template (#cluster-templates) for
your workload.

4. Optional but recommended: Enable Stackdriver Logging and Stackdriver Monitoring, so that gVisor
messages are logged.

5. Click Add node pool.

6. Con�gure the node pool according to your requirements. Click More node pool options for the node
pool. Con�gure these settings:

gcloud config set compute/region [COMPUTE_REGION]  

gcloud components update  

CONSOLE GCLOUD

https://cloud.google.com/compute/docs/zones#available
https://console.cloud.google.com/kubernetes/list

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 3/11

For the node version, select v1.12.6-gke.8 or higher.

For the node image, select Container-Optimized OS with Containerd (cos_containerd)
(beta).

Enable Enable sandbox with gVisor (beta).

If the nodes in the node pool use more than a single vCPU, click Add Label. Set the key to
cloud.google.com/gke-smt-disabled and the value to true. Next, follow the
instructions for disabling Hyper-Threading in the security bulletin
 (https://cloud.google.com/kubernetes-engine/docs/security-bulletins#may-14-2019).

Con�gure other node pool settings as required.

7. Save the node pool settings and continue con�guring your cluster.

The gvisor RuntimeClass is instantiated during node creation, before any workloads are
scheduled onto the node. You can check for the existence of the gvisor RuntimeClass using the
following command:

Note: For clusters running versions prior to v1.14.3, you also need to wait for the gvisor-admission-

webhook-config to be instantiated on the node. To check, use the following command:

On an existing cluster

You can enable GKE Sandbox on an existing cluster by adding a new node pool and enabling
the feature for that node pool, or by modifying an existing non-default node pool.

1. Visit the Google Kubernetes Engine menu in Cloud Console.

kubectl get runtimeclasses  

NAME AGE
gvisor 19s



kubectl get mutatingwebhookconfiguration gvisor-admission-webhook-config  

NAME CREATED AT
gvisor-admission-webhook-config 2019-04-19T20:52:25Z



CONSOLE GCLOUD

https://cloud.google.com/kubernetes-engine/docs/security-bulletins#may-14-2019

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 4/11

VISIT THE GOOGLE KUBERNETES ENGINE MENU (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/KUBER

2. Click the cluster's Edit button, which looks like a pencil.

3. If necessary, add an additional node pool by clicking Add node pool. To edit an existing node pool,
click the node pool's Edit button. Do not enable Sandbox with gVisor (beta) on the default node
pool.

4. Enable Sandbox with gVisor (beta), then click Done.

5. If necessary, make additional con�guration changes to the cluster, then click Save.

The gvisor RuntimeClass is instantiated during node creation, before any workloads are
scheduled onto the node. You can check for the existence of the gvisor RuntimeClass using the
following command:

Note: For clusters running versions prior to v1.14.3, you also need to wait for the gvisor-admission-

webhook-config to be instantiated on the node. To check, use the following command:

Optional: Enable Stackdriver Logging and Stackdriver Monitoring

It is optional but recommended that you enable Stackdriver Logging and Stackdriver Monitoring
on the cluster, so that gVisor messages are logged. You must use Google Cloud Console to
enable these features on an existing cluster.

1. Visit the Google Kubernetes Engine menu in Cloud Console.

VISIT THE GOOGLE KUBERNETES ENGINE MENU (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/KUBERN

2. Click the cluster's Edit button, which looks like a pencil.

kubectl get runtimeclasses  

NAME AGE
gvisor 19s



kubectl get mutatingwebhookconfiguration gvisor-admission-webhook-config  

NAME CREATED AT
gvisor-admission-webhook-config 2019-04-19T20:52:25Z



https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 5/11

3. Enable Stackdriver Logging and Stackdriver Monitoring.

4. If necessary, make additional con�guration changes to the cluster, then click Save.

Working with GKE Sandbox

Running an application in a sandbox

To force a Deployment to run on a node with GKE Sandbox enabled, set its
spec.template.spec.runtimeClassName to gvisor, as shown by this manifest for a
Deployment:

To create the Deployment, use the kubectl create command:

The Pod is deployed to a node in a node pool with GKE Sandbox enabled. To verify this, use the
kubectl get pods command to �nd the node where the Pod is deployed:

httpd.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: httpd
 labels:
 app: httpd
spec:
 replicas: 1
 selector:
 matchLabels:
 app: httpd
 template:
 metadata:
 labels:
 app: httpd
 spec:
 runtimeClassName: gvisor
 containers:
 - name: httpd
 image: httpd

 

kubectl create -f httpd.yaml 

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 6/11

Find the name of the Pod in the output, then run the following command to check its value for
RuntimeClass:

Alternatively, you can list the RuntimeClass of each Pod, and look for the ones where it is set to
gvisor:

This method of verifying that the Pod is running in a sandbox is trustworthy because it does
not rely on any data within the sandbox itself. Anything reported from within the sandbox is
untrustworthy, because it could be defective or malicious.

Running a regular Pod along with sandboxed Pods

After enabling GKE Sandbox on a node pool, you can run trusted applications on those nodes
without using a sandbox by using node taints and tolerations. These Pods are referred to as
"regular Pods" to distinguish them from sandboxed Pods.

Regular Pods, just like sandboxed Pods, are prevented from accessing other Google Cloud
services or cluster metadata. This prevention is part of the node's con�guration. If your regular
Pods or sandboxed Pods require access to Google Cloud services, use Workload Identity
 (https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity).

Running untrusted code on the same nodes as critical system services comes with potential risk, even if the

untrusted code is running in a sandbox. Consider these risks when designing your applications.

kubectl get pods 

NAME READY STATUS RESTARTS AGE
httpd-db5899bc9-dk7lk 1/1 Running 0 24s



kubectl get pods [NAME-OF-POD] -o jsonpath='{.spec.runtimeClassName}' 

gvisor 

kubectl get pods -o jsonpath=$'{range .items[*]}{.metadata.name}: {.spec.runtimeClas

[NAME-OF-POD]: gvisor 

https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 7/11

GKE Sandbox adds the following label and taint to nodes that can run sandboxed Pods:

In addition to any node a�nity and toleration settings in your Pod manifest, GKE Sandbox
applies the following node a�nity and toleration to all Pods with RuntimeClass set to gvisor:

To schedule a regular Pod on a node with GKE Sandbox enabled, manually apply the node
a�nity and toleration above in your Pod manifest.

If your pod can run on nodes with GKE Sandbox enabled, add the toleration.

If your pod must run on nodes with GKE Sandbox enabled, add both the node a�nity and
toleration.

For example, the following manifest modi�es the manifest used in Running an application in a
sandbox (#sandboxed-application) so that it runs as a regular Pod on a node with sandboxed
Pods, by removing the runtimeClass and adding both the taint and toleration above.

labels:
 sandbox.gke.io: gvisor

 

taints:
- effect: NoSchedule
 key: sandbox.gke.io
 value: gvisor

 

affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: sandbox.gke.io/runtime
 operator: In
 values:
 - gvisor

 

tolerations:
 - effect: NoSchedule
 key: sandbox.gke.io/runtime
 operator: Equal
 value: gvisor

 

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 8/11

First, verify that the Deployment is not running in a sandbox:

httpd-no-sandbox.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: httpd-no-sandbox
 labels:
 app: httpd
spec:
 replicas: 1
 selector:
 matchLabels:
 app: httpd
 template:
 metadata:
 labels:
 app: httpd
 spec:
 containers:
 - name: httpd
 image: httpd
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: sandbox.gke.io/runtime
 operator: In
 values:
 - gvisor
 tolerations:
 - effect: NoSchedule
 key: sandbox.gke.io/runtime
 operator: Equal
 value: gvisor

 

kubectl get pods -o jsonpath=$'{range .items[*]}{.metadata.name}: {.spec.runtimeClas

httpd-db5899bc9-dk7lk: gvisor
httpd-no-sandbox-5bf87996c6-cfmmd:



1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 9/11

The httpd Deployment created earlier is running in a sandbox, because its runtimeClass is
gvisor. The httpd-no-sandbox Deployment has no value for runtimeClass, so it is not running
in a sandbox.

Next, verify that the non-sandboxed Deployment is running on a node with GKE Sandbox by
running the following command:

The name of the node pool is embedded in the value of nodeName. Verify that the Pod is running
on a node in a node pool with GKE Sandbox enabled.

Note: If the regular Pod is unschedulable, verify that the taint and/or toleration is set correctly in the Pod

manifest.

Verifying metadata protection

To validate the assertion that metadata is protected from nodes that can run sandboxed Pods,
you can run a test:

1. Create a sandboxed Deployment from the following manifest, using kubectl apply -f. It
uses the fedora image, which includes the curl command. The Pod runs the /bin/sleep
command to ensure that the Deployment runs for 10000 seconds.

kubectl get pod -o jsonpath=$'{range .items[*]}{.metadata.name}: {.spec.nodeName}\n{

sandbox-metadata-test.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: fedora
 labels:
 app: fedora
spec:
 replicas: 1
 selector:
 matchLabels:
 app: fedora
 template:
 metadata:
 labels:

 

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 10/11

2. Get the name of the Pod using kubectl get pods, then use kubectl exec to connect to
the Pod interactively.

You are connected to a container running in the Pod, in a /bin/sh session.

3. Within the interactive session, attempt to access a URL that returns cluster metadata:

The command hangs and eventually times out, because the packets are silently dropped.

4. Press Ctrl+C to terminate the curl command, and type exit to disconnect from the Pod.

5. Remove the RuntimeClass line from the YAML manifest and redeploy the Pod using
kubectl apply -f [FILENAME]. The sandboxed Pod is terminated and recreated on a
node without GKE Sandbox.

6. Get the new Pod name, connect to it using kubectl exec, and run the curl command
again. This time, results are returned. This example output is truncated.

Type exit to disconnect from the Pod.

7. Remove the deployment:

Disabling GKE Sandbox

 app: fedora
 spec:
 runtimeClassName: gvisor
 containers:
 - name: fedora
 image: fedora
 command: ["/bin/sleep","10000"]

kubectl exec -it [POD-NAME] /bin/sh 

curl -s "http://metadata.google.internal/computeMetadata/v1/instance/attributes

ALLOCATE_NODE_CIDRS: "true"
API_SERVER_TEST_LOG_LEVEL: --v=3
AUTOSCALER_ENV_VARS: kube_reserved=cpu=60m,memory=960Mi,ephemeral-storage=41Gi;
...

 

kubectl delete deployment fedora 

1/25/2020 Running workloads with GKE Sandbox | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods 11/11

It isn't currently possible to update a node pool to disable GKE Sandbox. To disable GKE
Sandbox on an existing node pool, you can do one of the following:

Delete the previously-sandboxed Pods. Otherwise, after you disable GKE Sandbox, those
Pods run as regular Pods if no available nodes have GKE Sandbox enabled. Then delete
the node pool
 (https://cloud.google.com/kubernetes-engine/docs/how-to/node-pools#deleting_a_node_pool)

where GKE Sandbox was enabled, or

Resize the node pool to zero nodes
 (https://cloud.google.com/kubernetes-engine/docs/how-to/node-pools#resizing_a_node_pool), or

Recreate the Pods without specifying a value for the RuntimeClassName.

What's next

Learn more about managing node pools
 (https://cloud.google.com/kubernetes-engine/docs/how-to/node-pools).

Read the security overview
 (https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

https://cloud.google.com/kubernetes-engine/docs/how-to/node-pools#deleting_a_node_pool
https://cloud.google.com/kubernetes-engine/docs/how-to/node-pools#resizing_a_node_pool
https://cloud.google.com/kubernetes-engine/docs/how-to/node-pools
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

