
1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 1/24

Cloud Life Sciences

Documentation Guides

This page describes advanced methods for how to use BigQuery
 (https://cloud.google.com/bigquery) to analyze variants.

The data in this tutorial comes from the Illumina Platinum Genomes project
 (https://cloud.google.com/life-sciences/docs/public-datasets/illumina-platinum-genomes). The data was
loaded into a BigQuery table that uses the BigQuery variants schema
 (https://cloud.google.com/life-sciences/docs/how-tos/bigquery-variants-schema). The name of the
table is platinum_genomes_deepvariant_variants_20180823.

If your variant data is in a BigQuery table that uses the BigQuery variants schema, it's
straightforward to apply the queries in this tutorial to your data. For information on how to load
variant data into BigQuery, see the documentation on using the transform pipeline
 (https://cloud.google.com/life-sciences/docs/how-tos/load-variants#transform-pipeline).

Objectives

After completing this tutorial, you'll know how to:

Get an overview of the data

Find out how non-variant segments are represented

Find out how variant calls are represented

Find out how variant call quality �lters are represented

Aggregate hierarchical columns

Condense queries

Count distinct rows

Group rows

Write user-de�ned functions

This tutorial also shows how to �nd:

 (https://cloud.google.com/life-sciences/)

 (https://cloud.google.com/life-sciences/docs/)

Advanced guide to analyzing variants using
BigQuery

https://cloud.google.com/life-sciences/
https://cloud.google.com/life-sciences/docs/
https://cloud.google.com/life-sciences/docs
https://cloud.google.com/bigquery
https://cloud.google.com/life-sciences/docs/public-datasets/illumina-platinum-genomes
https://cloud.google.com/life-sciences/docs/how-tos/bigquery-variants-schema
https://cloud.google.com/life-sciences/docs/how-tos/load-variants#transform-pipeline

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 2/24



The number of rows in the table

The number of variant calls

Variants called for each sample

The number of samples

Variants per chromosome

High quality variants per sample

Costs

This tutorial uses billable components of Google Cloud, including:

BigQuery

Use the Pricing Calculator (https://cloud.google.com/products/calculator#tab=bigquery) to generate a
cost estimate based on your projected usage. New Cloud Platform users might be eligible for a
free trial (https://cloud.google.com/free-trial).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

https://cloud.google.com/products/calculator#tab=bigquery
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 3/24

4. You should be familiar with the BigQuery variants schema
 (https://cloud.google.com/life-sciences/docs/how-tos/bigquery-variants-schema).

Viewing the table schema and data

Access the table and view the schema

The Illumina Platinum Genomes platinum_genomes_deepvariant_variants_20180823 table is
publicly available through this link
 (https://bigquery.cloud.google.com/table/bigquery-public-
data:human_genome_variants.platinum_genomes_deepvariant_variants_20180823?tab=schema)

.

Variants and non-variants in the table

The Illumina Platinum Genomes data uses the gVCF
 (https://sites.google.com/site/gvcftools/home/about-gvcf) format, which means that there are rows
in the table that include non-variants. These non-variants are also known as "reference calls."

In the table, the non-variant segments are generally represented in the following ways:

With a zero-length alternate_bases value

With the text string <NON_REF> as an alternate_bases.alt value

With the text string <*> as an alternate_bases.alt value

The way that non-variant segments are represented typically depends on the variant caller that
generated the source data. The variants in the
platinum_genomes_deepvariant_variants_20180823 table have been called using DeepVariant
 (https://cloud.google.com/life-sciences/deepvariant), which uses the <*> notation.

The following tables show some rows containing values that represent non-variant segments.
The segments show a reference block of 10 bases on chromosome 1. The reference block starts
at position 1000. The reference base at position 1000 is an A. The reference bases at the other
positions of the block are not shown.

In the following table, the alternate_bases REPEATED RECORD column contains no values,
meaning that it is an ARRAY of length 0.

https://cloud.google.com/life-sciences/docs/how-tos/bigquery-variants-schema
https://bigquery.cloud.google.com/table/bigquery-public-data:human_genome_variants.platinum_genomes_deepvariant_variants_20180823?tab=schema
https://sites.google.com/site/gvcftools/home/about-gvcf
https://cloud.google.com/life-sciences/deepvariant

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 4/24

reference_name start_position end_position reference_bases alternate_bases.altreference_name start_position end_position reference_bases alternate_bases.alt

1 1000 1010 A

In the following table, the alternate_bases REPEATED RECORD column is length 1, and it contains
the literal text string <*>.

reference_name start_position end_position reference_bases alternate_bases.alt

1 1000 1010 A <*>

The queries used in this guide use the three representations shown above.

See the VCF speci�cation (https://samtools.github.io/hts-specs/VCFv4.3.pdf) for more information
on representing non-variant positions in the genome.

Viewing the table data

To view the data in the platinum_genomes_deepvariant_variants_20180823 table:

1. Go to the Details page in the BigQuery UI
 (https://bigquery.cloud.google.com/table/bigquery-public-
data:human_genome_variants.platinum_genomes_deepvariant_variants_20180823?tab=details)

.

Information about the table appears. You can see that it contains 19.6 GB of data and
has over 105,000,000 rows.

2. Click Preview to view some of the rows in the table.

Querying the table

After viewing the table schema and some of its rows, you can now start issuing queries and
analyzing data. Before continuing, make sure that you're familiar with the Standard SQL Query
Syntax (https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax) that BigQuery
uses.

Counting total rows in the table

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://bigquery.cloud.google.com/table/bigquery-public-data:human_genome_variants.platinum_genomes_deepvariant_variants_20180823?tab=details
https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 5/24

To view the number of rows in the table:

1. Go to the BigQuery UI.

GO TO THE BIGQUERY UI (HTTPS://BIGQUERY.CLOUD.GOOGLE.COM)

2. Click Compose query.

3. Copy and paste the following query into the New Query text area:

4. Click Run query. Running the query returns:

Row number_of_rows

1 105923159

Counting variant calls in the table

Each row in the table has a genomic position that is either a variant or non-variant segment.

Each row also contains a call column, which is an ARRAY of variant calls. Each call column
includes the name and other values, such as the genotype, quality columns, read depth, and
others typically found in a VCF �le.

To count the number of variant calls, query the number of elements inside the ARRAY columns.
You can do this in several ways which are shown below. Each query returns the value
182,104,652, which means that there is an average of 1.7 variant calls per row in the dataset.

Summing the lengths of call arrays

One way to count the total number of variant calls across all samples is to sum the length of
each call array:

 #standardSQL
 SELECT
 COUNT(1) AS number_of_rows
 FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_var

 

#standardSQL
SELECT

 

https://bigquery.cloud.google.com/

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 6/24

Running the query returns the correct value (182,104,652):

Row number_of_calls

1 182104652

JOINing each row

A second way to count the total number of variant calls across all samples is to JOIN
 (https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#join_types) each row
with the call column. Note the use of the comma (,) operator, which is a shorthand notation
used for JOIN. Also note that the join to the call column makes an implicit UNNEST
 (https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#unnest) operation on
the call column:

Counting name in a call column

A third way to count the total number of variant calls across all samples is to count the name
values in the call column. Each call column must have a single name value, so you can run the
following query:

Running the query returns the correct value (182,104,652):

 SUM(ARRAY_LENGTH(call)) AS number_of_calls
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_

#standardSQL
SELECT
 COUNT(call) AS number_of_calls
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_

 

#standardSQL
SELECT
 COUNT(call.name) AS number_of_calls
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_

 

https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#join_types
https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#unnest

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 7/24

Row number_of_callsRow number_of_calls

1 182104652

Counting variant and non-variant segments

To count the number of variant and non-variant segments in the table, �rst run a query to �lter
out the non-variant segments:

Running the query returns:

Row number_of_real_variants

1 38549388

As noted in Counting variant calls (#counting_variant_calls_in_the_table), the total number of
variant calls in the table is 182,104,652, so this result shows that the vast majority of rows in
the table are non-variant segments.

As shown in the section on Variants and non-variants in the table
 (#variants_and_non-variants_in_the_table_variants), there are at least three ways to classify a variant
row as a non-variant segment. In the query above, the WHERE clause includes rows where the
alternate_bases column has a value that is a true variant (meaning that it is not a special
marker value such as <*> or <NON_REF>).

For each row in the table, a subquery is issued over the alternate_bases column of that row,
which returns the value 1 for each value of alternate_bases that is not <NON_REF> or <*>. The
number of rows that the subquery returns is the number of variant segments.

#standardSQL
SELECT
 COUNT(1) AS number_of_real_variants
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.alternate_bases) AS alt
 WHERE
 alt.alt NOT IN ("<NON_REF>", "<*>"))

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 8/24

The following query shows how to get the count of non-variant segments:

Running the query returns:

Row number_of_non_variants

1 143555264

Adding the number of real variants (38,549,388) to the number of non-variant segments
(143,555,264) equals the total number of variant calls.

Counting the variants called by each sample

After examining the top-level rows in the table, you can start querying for child rows. These
rows include data such as the individual samples that have had calls made against the
variants.

Each variant in the table has zero or more values for call.name. A particular call.name value
can appear in multiple rows.

To count the number of rows in which each call set appears, run the following query:

#standardSQL
SELECT
 COUNT(1) AS number_of_non_variants
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 NOT EXISTS (SELECT 1
 FROM UNNEST(v.alternate_bases) AS alt
 WHERE
 alt.alt NOT IN ("<NON_REF>", "<*>"))

 

#standardSQL
SELECT
 call.name AS call_name,
 COUNT(call.name) AS call_count_for_call_set
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
GROUP BY
 call_name

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 9/24

Running the query returns six rows. Each call_name corresponds to a sequenced individual
human:

Row call_name call_count_for_call_set

1 NA12877 31592135

2 NA12878 28012646

3 NA12889 31028550

4 NA12890 30636087

5 NA12891 33487348

6 NA12892 27347886

Humans typically don't have the 30 million variants shown in the values for
call_count_for_call_set. Filter out the non-variant segments to count just the variant rows:

Running the query returns:

Row call_name call_count_for_call_set

ORDER BY
 call_name

#standardSQL
SELECT
 call.name AS call_name,
 COUNT(call.name) AS call_count_for_call_set
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.alternate_bases) AS alt
 WHERE
 alt.alt NOT IN ("<NON_REF>", "<*>"))
GROUP BY
 call_name
ORDER BY
 call_name

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 10/24

Row call_name call_count_for_call_set

1 NA12877 6284275

2 NA12878 6397315

3 NA12889 6407532

4 NA12890 6448600

5 NA12891 6516669

6 NA12892 6494997

The number of variants is now closer to 6 million, which is more typical for a human. Continue
to the next section to �lter true variants by genotype.

Filtering true variants by genotype

The variants in the table include no-calls, which are represented by a genotype value of -1.
These variants are not considered true variants for individuals, so �lter them out. True variants
can only include calls with genotypes greater than zero. If a call includes only genotypes that
are no-calls (-1) or reference (0), then they are not true variants.

To �lter the variants by genotype:

Running the query returns:

#standardSQL
SELECT
 call.name AS call_name,
 COUNT(call.name) AS call_count_for_call_set
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1 FROM UNNEST(call.genotype) AS gt WHERE gt > 0)
 AND NOT EXISTS (SELECT 1 FROM UNNEST(call.genotype) AS gt WHERE gt < 0)
GROUP BY
 call_name
ORDER BY
 call_name

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 11/24

Row call_name call_count_for_call_setRow call_name call_count_for_call_set

1 NA12877 4486610

2 NA12878 4502017

3 NA12889 4422706

4 NA12890 4528725

5 NA12891 4424094

6 NA12892 4495753

Counting samples in the table

In Counting the variants called by each sample (#counting_the_variants_called_by_each_sample),
each query returned six rows with values for call_name. To instead query for and get the value
for that number of rows, you can run the following query:

Running the query returns:

Row number_of_callsets

1 6

Counting variants per chromosome

To count the number of variants per chromosome, you can run the following query, which:

Counts all rows in which there is at least one variant call with at least one genotype
greater than 0

Groups the variant rows by chromosome and counts each group

#standardSQL
SELECT
 COUNT(DISTINCT call.name) AS number_of_callsets
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 12/24

Running the query returns the name of the chromosome (reference_name) and the number of
variant rows for each chromosome:

Row reference_name number_of_variant_rows

1 chr1 615000

2 chr2 646401

3 chr3 542315

4 chr4 578600

5 chr5 496202

...

Counting high-quality variants per sample

Querying calls with multiple FILTER values

The VCF speci�cation (https://samtools.github.io/hts-specs/VCFv4.3.pdf) describes the FILTER
column which can be used to label variant calls of differing qualities.

#standardSQL
SELECT
 reference_name,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call, UNNEST(call.genotype) AS gt
 WHERE gt > 0)
GROUP BY
 reference_name
ORDER BY
 CASE
 WHEN SAFE_CAST(REGEXP_REPLACE(reference_name, '^chr', '') AS INT64) < 10
 THEN CONCAT('0', REGEXP_REPLACE(reference_name, '^chr', ''))
 ELSE REGEXP_REPLACE(reference_name, '^chr', '')
 END

 

https://samtools.github.io/hts-specs/VCFv4.3.pdf

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 13/24

The following query shows how to view the per-variant-call FILTER values for the dataset:

Running the query returns:

Row call_�lter number_of_calls

1 RefCall 11681534

2 PASS 26867854

The PASS value signi�es that a variant call is of a high quality.

FILTERing for high quality variant calls

When analyzing variants, you might want to �lter out lower quality variants. If the FILTER
column contains the value PASS, it is expected that the column will contain no other values. You
can verify this by running the following query. The query also omits any calls that do not
contain a PASS value under FILTER.

#standardSQL
SELECT
 call_filter,
 COUNT(call_filter) AS number_of_calls
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
 v.call,
 UNNEST(call.FILTER) AS call_filter
GROUP BY
 call_filter
ORDER BY
 number_of_calls

 

#standardSQL
SELECT
 reference_name,
 start_position,
 end_position,
 reference_bases,
 call.name AS call_name,
 (SELECT STRING_AGG(call_filter) FROM UNNEST(call.FILTER) AS call_filter) AS filter
 ARRAY_LENGTH(call.FILTER) AS filter_count
FROM

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 14/24

As expected, running the query returns zero results.

Counting all high quality calls for each sample

The following query shows how to count all calls (variants and non-variants) for each call set,
and omits any call with a non-PASS �lter:

Running the query returns:

Row call_name number_of_calls

1 NA12877 29795946

2 NA12878 26118774

3 NA12889 29044992

4 NA12890 28717437

5 NA12891 31395995

 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1 FROM UNNEST(call.FILTER) AS call_filter WHERE call_filter = 'PASS
 AND ARRAY_LENGTH(call.FILTER) > 1
ORDER BY
 filter_count DESC, reference_name, start_position, end_position, reference_bases,
LIMIT
 10

#standardSQL
SELECT
 call.name AS call_name,
 COUNT(1) AS number_of_calls
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 NOT EXISTS (SELECT 1 FROM UNNEST(call.FILTER) AS call_filter WHERE call_filter !=
GROUP BY
 call_name
ORDER BY
 call_name

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 15/24

Row call_name number_of_calls

6 NA12892 25349974

Counting all high quality true variant calls for each sample

The following query shows how to count all calls (variants and non-variants) for each sample.
It omits any call with a non-PASS �lter, and only includes calls with at least one true variant,
meaning that genotype > 0:

Running the query returns:

Row call_name number_of_calls

1 NA12877 4486610

2 NA12878 4502017

3 NA12889 4422706

4 NA12890 4528725

5 NA12891 4424094

6 NA12892 4495753

#standardSQL
SELECT
 call.name AS call_name,
 COUNT(1) AS number_of_calls
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 NOT EXISTS (SELECT 1 FROM UNNEST(call.FILTER) AS call_filter WHERE call_filter !=
 AND EXISTS (SELECT 1 FROM UNNEST(call.genotype) as gt WHERE gt > 0)
GROUP BY
 call_name
ORDER BY
 call_name

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 16/24

Best practices

Condensing queries

As your queries become more complex, it's important to keep them concise to ensure that their
logic is correct and simple to follow.

The following example demonstrates how to start from a query that counts the number of
variants per chromosome and, step by step, condense it using SQL syntax and user-de�ned
functions.

As explained in the section on counting variants per chromosome
 (#counting_variants_per_chromosome), the query has the following requirements:

Counts all rows in which there is at least one variant call with at least one genotype
greater than 0

Groups the variant rows by chromosome and counts each group

Writing this query can be complicated because, to complete the �rst task, you need to look into
an ARRAY (genotype) within an ARRAY (call) while keeping the execution context of the query at
the row level. This is because you want to produce a per-variant result, rather than a per-call or
per-genotype result.

The UNNEST function allows you to query over an ARRAY column as if the column were a table.
The function returns one row for each element of an ARRAY. It also doesn't change the query
context. Therefore, you can start with using an UNNEST function in an EXISTS subquery in a
WHERE clause:

#standardSQL
SELECT
 reference_name,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call
 WHERE EXISTS (SELECT 1
 FROM UNNEST(call.genotype) AS gt
 WHERE gt > 0))
GROUP BY

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 17/24

The query returns the same results as the example in counting variants per chromosome
 (#counting_variants_per_chromosome):

Row reference_name number_of_variant_rows

1 chr1 615000

2 chr10 396773

3 chr11 391260

4 chr12 382841

5 chr13 298044

...

The query can be more concise by changing the EXISTS clause into a JOIN of the call column
with the call.genotype column. Recall that the comma operator is a shorthand notation used
for JOIN:

The query works, and is concise, but it doesn't allow you to sort the output in ascending
numerical order of chromosomes (reference_name). This is because the values in
reference_name are string types, and each value contains the pre�x "chr."

 reference_name
ORDER BY
 reference_name

#standardSQL
SELECT
 reference_name,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call, UNNEST(call.genotype) AS gt
 WHERE gt > 0)
GROUP BY
 reference_name
ORDER BY
 reference_name

 

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 18/24

To sort the output numerically, �rst remove the "chr" pre�x from the reference_name column
and give it the alias chromosome:

The query uses the REGEXP_REPLACE
 (https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-
operators#regexp_replace)

function to replace the "chr" pre�x string with an empty string. It then changes the GROUP BY and
ORDER BY functions to use the computed chromosome alias. However, the output still sorts by
string:

Row chromosome number_of_variant_rows

1 1 615000

2 10 396773

3 11 391260

4 12 382841

5 13 298044

...

To instead sort the output numerically, cast the chromosome column from a string to an integer:

#standardSQL
SELECT
 REGEXP_REPLACE(reference_name, '^chr', '') AS chromosome,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call, UNNEST(call.genotype) AS gt
 WHERE gt > 0)
GROUP BY
 chromosome
ORDER BY
 chromosome

 

#standardSQL
SELECT

 

https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#regexp_replace

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 19/24

In this case, the query returns an error because not all chromosome names, such as "X," "Y," and
"M" are numeric. Instead, use the CASE
 (https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#conditional-
expressions)

function to prepend a "0" to chromosomes 1 through 9 and remove the "chr" pre�x:

The query returns the correct output:

Row chromosome number_of_variant_rows

1 01 615000

 CAST(REGEXP_REPLACE(reference_name, '^chr', '') AS INT64) AS chromosome,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call, UNNEST(call.genotype) AS gt
 WHERE gt > 0)
GROUP BY
 chromosome
ORDER BY
 chromosome

#standardSQL
SELECT
 CASE
 WHEN SAFE_CAST(REGEXP_REPLACE(reference_name, '^chr', '') AS INT64) < 10
 THEN CONCAT('0', REGEXP_REPLACE(reference_name, '^chr', ''))
 ELSE REGEXP_REPLACE(reference_name, '^chr', '')
 END AS chromosome,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call, UNNEST(call.genotype) AS gt
 WHERE gt > 0)
GROUP BY
 chromosome
ORDER BY
 chromosome

 

https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#conditional-expressions

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 20/24

Row chromosome number_of_variant_rows

2 02 646401

3 03 542315

4 04 578600

5 05 496202

...

Note the use of the SAFE_CAST
 (https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#casting)

function, which returns NULL for chromosomes X, Y, and M instead of returning an error.

As a last improvement on the output, display the reference_name column again instead of
setting it to the chromosome alias. To do so, move the CASE clause to the ORDER BY function:

This �nal query is the same as the one shown in Counting variants per chromosome
 (#counting_variants_per_chromosome).

Writing user-de�ned functions

#standardSQL
SELECT
 reference_name,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call, UNNEST(call.genotype) AS gt
 WHERE gt > 0)
GROUP BY
 reference_name
ORDER BY
 CASE
 WHEN SAFE_CAST(REGEXP_REPLACE(reference_name, '^chr', '') AS INT64) < 10
 THEN CONCAT('0', REGEXP_REPLACE(reference_name, '^chr', ''))
 ELSE REGEXP_REPLACE(reference_name, '^chr', '')
 END

 

https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#casting

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 21/24

BigQuery supports User-de�ned functions
 (https://cloud.google.com/bigquery/docs/reference/standard-sql/user-de�ned-functions), which enable
you to create a function using another SQL expression or another programming language, such
as JavaScript.

The example in Condensing queries (#condensing_queries) shows how to build a complex query,
but the query becomes overly verbose.

The following query demonstrates how to make the query more concise by moving the CASE
logic into a function:

The following query also demonstrates how to make the query more concise, but it uses a
function de�ned in JavaScript:

#standardSQL
CREATE TEMPORARY FUNCTION SortableChromosome(reference_name STRING)
 RETURNS STRING AS (
 -- Remove the leading "chr" (if any) in the reference_name
 -- If the chromosome is 1 - 9, prepend a "0" since
 -- "2" sorts after "10", but "02" sorts before "10".
 CASE
 WHEN SAFE_CAST(REGEXP_REPLACE(reference_name, '^chr', '') AS INT64) < 10
 THEN CONCAT('0', REGEXP_REPLACE(reference_name, '^chr', ''))
 ELSE REGEXP_REPLACE(reference_name, '^chr', '')
 END
);

SELECT
 reference_name,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call, UNNEST(call.genotype) AS gt
 WHERE gt > 0)
GROUP BY
 reference_name
ORDER BY SortableChromosome(reference_name)

 

#standardSQL
CREATE TEMPORARY FUNCTION SortableChromosome(reference_name STRING)
 RETURNS STRING LANGUAGE js AS """

 

https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 22/24

Both queries return the correct result, but their logic is more concise.

Improving query pe�ormance and reducing costs

BigQuery pricing (https://cloud.google.com/bigquery/pricing) is based on the number of bytes
processed for a query. Query performance also improves when the amount of data processed is
reduced. The BigQuery UI provides data on how many seconds have elapsed since a query
started and how many bytes the query processed. See the BigQuery query plan explanation
 (https://cloud.google.com/bigquery/query-plan-explanation) for information on optimizing your
queries.

Some of the examples in this page, such as Counting the variant calls in a table
 (#counting_variant_calls_in_the_table), demonstrate multiple ways to write a query. To determine
which method of querying is best for you, examine the duration of different queries and see
how many bytes of data they process.

 // Remove the leading "chr" (if any) in the reference_name
 var chr = reference_name.replace(/^chr/, '');

 // If the chromosome is 1 - 9, prepend a "0" since
 // "2" sorts after "10", but "02" sorts before "10".
 if (chr.length == 1 && '123456789'.indexOf(chr) >= 0) {
 return '0' + chr;
 }

 return chr;
""";

SELECT
 reference_name,
 COUNT(reference_name) AS number_of_variant_rows
FROM
 `bigquery-public-data.human_genome_variants.platinum_genomes_deepvariant_variants_
WHERE
 EXISTS (SELECT 1
 FROM UNNEST(v.call) AS call, UNNEST(call.genotype) AS gt
 WHERE gt > 0)
GROUP BY
 reference_name
ORDER BY SortableChromosome(reference_name)

https://cloud.google.com/bigquery/pricing
https://cloud.google.com/bigquery/query-plan-explanation

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 23/24

Cleaning up

After you've �nished the tutorial, you can clean up the resources you created on Google Cloud
so you won't be billed for them in the future. The following sections describe how to delete or
turn off these resources.

Deleting the project

The easiest way to eliminate billing is to delete the project you used for the tutorial.

To delete the project:

Warning: Deleting a project has the following consequences:

If you used an existing project, you'll also delete any other work you've done in the project.

You can't reuse the project ID of a deleted project. If you created a custom project ID that you plan to

use in the future, delete the resources inside the project instead. This step ensures that URLs that use

the project ID, such as an appspot.com URL, remain available.

If you are exploring multiple tutorials and quickstarts, reusing projects instead of deleting them prevents you

from exceeding project quota limits.

1. In the Cloud Console, go to the Projects page.

GO TO THE PROJECTS PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PROJECTS)

2. In the project list, select the project you want to delete and click Delete project.

3. In the dialog, type the project ID, and then click Shut down to delete the project.

https://console.cloud.google.com/iam-admin/projects

1/25/2020 Advanced guide to analyzing variants using BigQuery | Cloud Life Sciences Documentation | Google Cloud

https://cloud.google.com/life-sciences/docs/tutorials/analyze-variants-advanced 24/24

What's next

Work through the other Cloud Life Sciences tutorials
 (https://cloud.google.com/life-sciences/docs/tutorials).

Analyze variants in BigQuery using R, RMarkdown, or JavaScript
 (https://github.com/googlegenomics/getting-started-bigquery).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

https://cloud.google.com/life-sciences/docs/tutorials
https://github.com/googlegenomics/getting-started-bigquery
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

