
1/25/2020 Training using the built-in XGBoost algorithm  |  AI Platform

https://cloud.google.com/ml-engine/docs/algorithms/xgboost 1/8

eature is in a pre-release state and might change or have limited support. For more information, see the product launc

s (/products/#product-launch-stages).

Training with built-in algorithms on AI Platform allows you to submit your dataset and train a model
without writing any training code. This page explains how the built-in XGBoost algorithm works, and
how to use it.

The built-in XGBoost algorithm is a wrapper for the XGBoost (https://xgboost.readthedocs.io/en/latest/)

algorithm that is compatible to be run on AI Platform.

This document describes a version of the algorithm that runs on a single virtual machine replica.
There is also a distributed version of this algorithm (/ml-engine/docs/algorithms/distributed-xgboost) that
uses multiple virtual machines for training and requires slightly different usage.

This algorithm has two phases:

1. Preprocessing: AI Platform processes your mix of categorical and numerical data into an all
numerical dataset in order to prepare it for training with XGBoost.

2. Training: AI Platform runs training using the XGBoost algorithm based on your dataset and the
model parameters you supplied. The current implementation is based on XGBoost's 0.80
version.

The following features are not supported for training with the single-replica version of the built-in
XGBoost algorithm:

Training with GPUs. To train with GPUs, use the built-in distributed XGBoost algorithm
 (/ml-engine/docs/algorithms/distributed-xgboost).

https://cloud.google.com/products/#product-launch-stages
https://xgboost.readthedocs.io/en/latest/
https://cloud.google.com/ml-engine/docs/algorithms/distributed-xgboost
https://cloud.google.com/ml-engine/docs/algorithms/distributed-xgboost


1/25/2020 Training using the built-in XGBoost algorithm  |  AI Platform

https://cloud.google.com/ml-engine/docs/algorithms/xgboost 2/8

Distributed training. To run a distributed training job, use the built-in distributed XGBoost
algorithm (/ml-engine/docs/algorithms/distributed-xgboost).

The following AI Platform scale tiers and machine types (/ml-engine/docs/machine-types) are supported:

BASIC scale tier

CUSTOM scale tier with any of the Compute Engine machine types supported by AI Platform
Training (/ml-engine/docs/machine-types#compute-engine-machine-types).

CUSTOM scale tier with any of the following legacy machine types
 (/ml-engine/docs/machine-types#legacy-machine-types):

standard

large_model

complex_model_s

complex_model_m

complex_model_l

XGBoost works on numerical tabular data. Each row of a dataset represents one instance, and each
column of a dataset represents a feature value. The target column represents the value you want to
predict.

Your input data must be a CSV �le with UTF-8 encoding. If your training data only consists of
categorical and numerical values, then you can use our preprocessing module to convert categorical
data to numerical data. Otherwise, you can run training without automatic preprocessing enabled.

You must prepare your input CSV �le to meet the following requirements:

Remove the header row. The header row contains the labels for each column. Remove the
header row in order to avoid submitting it with the rest of the data instances as part of the
training data.

https://cloud.google.com/ml-engine/docs/algorithms/distributed-xgboost
https://cloud.google.com/ml-engine/docs/machine-types
https://cloud.google.com/ml-engine/docs/machine-types#compute-engine-machine-types
https://cloud.google.com/ml-engine/docs/machine-types#legacy-machine-types


1/25/2020 Training using the built-in XGBoost algorithm  |  AI Platform

https://cloud.google.com/ml-engine/docs/algorithms/xgboost 3/8

Ensure that the target column is the �rst column. The target column contains the value that
you are trying to predict. For a classi�cation algorithm, all values in the target column are a
class or category. For a regression algorithm, all values in the target column are a numerical
value.

Columns of integer values are interpreted as categorical columns by default, if there are few enough
unique values. For example, if a column in your dataset includes integer values such as {101, 102,
103}, AI Platform interprets these values as categories, such as {'high', 'medium', 'low'}.

To avoid this incorrect analysis, make sure to convert integers to �oats when you intend the data to
be numerical: {101.0, 102.0, 103.0}. To ensure that integers are interpreted as categorical, append a
string before or after each value: {code_101, code_102, code_103}.

For regression training jobs, make sure to normalize your target values so that each value is between
0 and 1.

This section explains how to submit a built-in XGBoost training job.

You can �nd brief explanations of each hyperparameter within the Google Cloud Console, and a more
comprehensive explanation in the reference for the built-in XGBoost algorithm
 (/ml-engine/docs/algorithms/reference/xgboost).

https://cloud.google.com/ml-engine/docs/algorithms/reference/xgboost


1/25/2020 Training using the built-in XGBoost algorithm  |  AI Platform

https://cloud.google.com/ml-engine/docs/algorithms/xgboost 4/8



1/25/2020 Training using the built-in XGBoost algorithm  |  AI Platform

https://cloud.google.com/ml-engine/docs/algorithms/xgboost 5/8

Automatic preprocessing works for categorical and numerical data. The preprocessing routine �rst
analyzes and then transforms your data.

First, AI Platform automatically detects the data type of each column, identi�es how each column
should be treated, and computes some statistics of the data in the column. This information is
captured in the metadata.json �le.

AI Platform analyzes the type of the target column to identify whether the given dataset is for
regression or classi�cation. If this analysis con�icts with your selection for the objective, it results in
an error. Be explicit about how the target column should be treated by formatting your data clearly in
ambiguous cases (#handle-integer-values).

Type: The column can be either numerical or categorical.

Treatment: AI Platform identi�es how to treat each column as follows:

If the column includes a single value in all the rows, it is treated as a constant.

If the column is categorical, and includes unique values in all the rows, it is treated as a
row_identi�er.

If the column is numerical with �oat values, or if it's numerical with integer values and it
contains many unique values, then the column is treated as numerical.

If the column is numerical with integer values, and it contains few enough unique values,
then the column is treated as a categorical column where the integer values are the
identity or the vocabulary.

A column is considered to have few unique values if the number of unique values in
the column is less than 20% of the number of rows in the input dataset.



1/25/2020 Training using the built-in XGBoost algorithm  |  AI Platform

https://cloud.google.com/ml-engine/docs/algorithms/xgboost 6/8

If the column is categorical with high cardinality, then the column is treated with hashing,
where the number of hash buckets equals to the square root of the number of unique
values in the column.

A categorical column is considered to have high cardinality if the number of unique
values is greater than the square root of the number of rows in the dataset.

If the column is categorical, and the number of unique values is less than or equal to the
square root of the number of rows in the dataset, then the column is treated as a normal
categorical column with vocabulary.

Statistics: AI Platform computes the following statistics, based on the identi�ed column type
and treatment, to be used for transforming the column in a later stage.

If the column is numeric, the mean and variance values are computed.

If the column is categorical, and the treatment is identity or vocabulary, the distinct values
are extracted from the column.

If the column is categorical, and the treatment is hashing, the number of hash buckets is
computed with respect to the cardinality of the column.

After the initial analysis of the dataset is complete, AI Platform transforms your data based on the
types, treatments and statistics applied to your dataset. AI Platform does transformations in the
following order:

1. Splits the training dataset into validation and test datasets if you specify the amount of
training data to use in each (as a percentage).

2. Removes any rows that have more than 10% of features missing.

3. Fills up missing values. The mean is used for numerical columns, and zeroes are used for
categorical columns. See an example below (#examples).

4. For each categorical column with vocabulary and identity treatment, AI Platform does one-hot
encoding on the column values. See an example below (#examples).

5. For each categorical column with hashing treatment, AI Platform uses scikit-learn's
FeatureHasher
 (https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html) to do
feature hashing. The number of features counted earlier determines the number of hash
buckets.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html


1/25/2020 Training using the built-in XGBoost algorithm  |  AI Platform

https://cloud.google.com/ml-engine/docs/algorithms/xgboost 7/8

6. Each column designated with a row_key or constant treatment is removed.

Rows with 10% of missing values are removed. In the following examples, assume the row has 10
values. Each example row is truncated for simplicity.

Row issue Original values
Transformed
values

Explanation

Example row
with no missing
values

[3, 0.45, ..., 
'fruits', 0, 1]

[3, 0.45, ..., 
1, 0, 0, 0, 1]

The string 'fruits' is transformed to the values "1, 0, 0" in one-hot
encoding.

Too many
missing values

[3, 0.45, ..., 
'fruits', __, __]

Row is removed More than 10% of values in the row are missing.

Missing
numerical value

[3, 0.45, ..., 
'fruits', 0, __]

[3, 0.45, ..., 
1, 0, 0, 0, 0.54]

The mean value for the column replaces the missing
numerical value. In this example, the mean is 0.54.

The string 'fruits' is transformed to the values "1, 0, 0" in one-
hot encoding.

Missing
categorical value

[3, 0.45, ..., 
__, 0, 1]

[3, 0.45, ..., 
0, 0, 0, 0, 1]

The missing categorical value is transformed to the values
"0, 0, 0" in one-hot encoding.

The removal of the rows is applied only to the training data.

After automatic preprocessing is complete, AI Platform uploads your processed dataset back to your
Cloud Storage bucket at the directory you speci�ed in the job request.

Learn more about XGBoost (https://github.com/dmlc/xgboost/tree/master/demo).

Refer to the built-in XGBoost reference (/ml-engine/docs/algorithms/reference/xgboost) to learn
about all the different parameters.

https://github.com/dmlc/xgboost/tree/master/demo
https://cloud.google.com/ml-engine/docs/algorithms/reference/xgboost


1/25/2020 Training using the built-in XGBoost algorithm  |  AI Platform

https://cloud.google.com/ml-engine/docs/algorithms/xgboost 8/8


