
1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 1/11

This tutorial is designed to let you quickly start exploring and developing applications with the Cloud
Natural Language API. It is designed for people familiar with basic programming, though even
without much programming knowledge, you should be able to follow along. Having walked through
this tutorial, you should be able to use the Reference documentation
 (/natural-language/docs/reference/rest/) to create your own basic applications.

This tutorial steps through a Natural Language API application using Python code. The purpose here
is not to explain the Python client libraries, but to explain how to make calls to the Natural Language
API. Applications in Java and Node.js are essentially similar. Consult the Natural Language API
Samples (/natural-language/docs/samples) for samples in other languages (including the sample in this
tutorial).

This tutorial has several prerequisites:

You've set up a Cloud Natural Language API project
 (/natural-language/docs/getting-started#set_up_a_project) in the Google Cloud Console.

You've set up your environment using Application Default Credentials
 (/natural-language/docs/common/auth#adc) in the Google Cloud Console.

You are familiar with Python (https://www.python.org/) in the Google Cloud Console
programming.

You have set up your Python development environment. It is recommended that you have the
latest version of Python, pip, and virtualenv installed on your system. For instructions, see the
Python Development Environment Setup Guide (https://cloud.google.com/python/setup) for Google
Cloud Platform.

You've installed the Google Cloud Client Library for Python
 (/natural-language/docs/reference/libraries)

https://cloud.google.com/natural-language/docs/reference/rest/
https://cloud.google.com/natural-language/docs/samples
https://cloud.google.com/natural-language/docs/getting-started#set_up_a_project
https://cloud.google.com/natural-language/docs/common/auth#adc
https://www.python.org/
https://cloud.google.com/python/setup
https://cloud.google.com/natural-language/docs/reference/libraries


1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 2/11

This tutorial walks you through a basic Natural Language API application, using classifyText
requests, which classi�es content into categories along with a con�dence score, such as:

To see the list of all available category labels, see Categories (/natural-language/docs/categories).

In this tutorial, you will create an application to perform the following tasks:

Classify multiple text �les and write the result to an index �le.

Process input query text to �nd similar text �les.

Process input query category labels to �nd similar text �les.

The tutorial uses content from Wikipedia. You could create a similar application to process news
articles, online comments, and so on.

You can �nd the tutorial source code in the Python Client Library Samples
 (https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/language/classify_text) on
GitHub.

This tutorial uses sample source text from Wikipedia. You can �nd the sample text �les in the
resources/texts
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/tree/master/language/classify_text/resources/texts)

folder of the GitHub project.

To use the Cloud Natural Language API, you must to import the language module from the google-
cloud-language library. The language.types module contains classes that are required for creating

https://cloud.google.com/natural-language/docs/categories
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/language/classify_text
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/language/classify_text/resources/texts


1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 3/11

requests. The language.enums module is used to specify the type of the input text. This tutorial
classi�es plain text content (language.enums.Document.Type.PLAIN_TEXT).

To calculate the similarity between text based on their resulting content classi�cation, this tutorial
uses numpy for vector calculations.

You can use the Python client library to make a request to the Natural Language API to classify
content. The Python client library encapsulates the details for requests to and responses from the
Natural Language API.

The classify function in the tutorial calls the Natural Language API classifyText method, by �rst
creating an instance of the LanguageServiceClient class, and then calling the classify_text
method of the LanguageServiceClient instance.

The tutorial classify function only classi�es text content for this example. You can also classify the
content of a web page by passing in the source HTML of the web page as the text and by setting the
type parameter to language.enums.Document.Type.HTML.



1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 4/11

For more information, see Classifying Content (/natural-language/docs/classifying-text). For details about
the structure of requests to the Natural Language API, see the Natural Language API Reference
 (/natural-language/docs/reference/rest).

The returned result is a dictionary with the category labels as keys, and con�dence scores as values,
such as:

https://cloud.google.com/natural-language/docs/classifying-text
https://cloud.google.com/natural-language/docs/reference/rest


1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 5/11

The tutorial Python script is organized so that it can be run from the command line for quick
experiments. For example you can run:

The content to be classi�ed must have at least 20 tokens (words) in order for the Natural Language API to return a

nse.

The index function in the tutorial script takes, as input, a directory containing multiple text �les, and
the path to a �le where it stores the indexed output (the default �le name is index.json). The index
function reads the content of each text �le in the input directory, and then passes the text �les to the
Cloud Natural Language API to be classi�ed into content categories.



1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 6/11

The results from the Cloud Natural Language API for each �le are organized into a single dictionary,
serialized as a JSON string, and then written to a �le. For example:



1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 7/11

To index text �les from the command line with the default output �lename index.json, run the
following command:

Once the index �le (default �le name = index.json) has been created, we can make queries to the
index to retrieve some of the �lenames and their con�dence scores.

One way to do this is to use a category label as the query, which the tutorial accomplishes with the
query_category function. The implementation of the helper functions, such as similarity, can be
found in the classify_text_tutorial.py �le. In your applications the similarity scoring and ranking
should be carefully designed around speci�c use cases.



1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 8/11

For a list of all of the available categories, see Categories (/natural-language/docs/categories).

As before, you can call the query_category function from the command line:

You should see output similar to the following:

https://cloud.google.com/natural-language/docs/categories


1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 9/11

Alternatively, you can query with text that may not be part of the indexed text. The tutorial query
function is similar to the query_category function, with the added step of making a classifyText
request for the text input, and using the results to query the index �le.



1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 10/11

To do this from the command line, run:

This prints something similar to the following:



1/25/2020 Content Classification Tutorial  |  Cloud Natural Language API

https://cloud.google.com/natural-language/docs/classify-text-tutorial 11/11

With the content classi�cation API you can create other applications. For example:

Classify every paragraph in an article to see the transition between topics.

Classify timestamped content and analyze the trend of topics over time.

Compare content categories with content sentiment using the analyzeSentiment method.

Compare content categories with entities mentioned in the text.

Additionally, other GCP products can be used to streamline your work�ow:

In the sample application for this tutorial, we processed local text �les, but you can modify the
code to process text �les stored in a Google Cloud Storage bucket by passing a Google Cloud
Storage URI to the classify_text method.

In the sample application for this tutorial, we stored the index �le locally, and each query is
processed by reading through the whole index �le. This means high latency if you have a large
amount of indexed data or if you need to process numerous queries. Datastore (/datastore/docs)

is a natural and convenient choice for storing the index data.

https://cloud.google.com/datastore/docs

