
1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 1/17

Node.js Guides

Apps running on Google Cloud managed platforms such as App Engine
 (https://cloud.google.com/appengine/docs/) can avoid managing user authentication and session
management by using Identity-Aware Proxy (IAP) (https://cloud.google.com/iap/) to control
access to them. IAP can not only control access to the app, but it also provides information
about the authenticated users, including the email address and a persistent identi�er to the
app in the form of new HTTP headers.

Objectives

Require users of your App Engine app to authenticate themselves by using IAP.

Access users' identities in the app to display the current user's authenticated email
address.

Costs

This tutorial uses the following billable components of Google Cloud:

App Engine (https://cloud.google.com/appengine/pricing)

IAP (https://cloud.google.com/iap/pricing)

To generate a cost estimate based on your projected usage, use the pricing calculator
 (https://cloud.google.com/products/calculator). New Google Cloud users might be eligible for a free
trial (https://cloud.google.com/free-trial).

 (https://cloud.google.com/nodejs/)

Authenticating users with Node.js

https://cloud.google.com/nodejs/
https://cloud.google.com/docs/overview/
https://cloud.google.com/appengine/docs/
https://cloud.google.com/iap/
https://cloud.google.com/appengine/pricing
https://cloud.google.com/iap/pricing
https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 2/17

When you �nish this tutorial, you can avoid continued billing by deleting the resources you
created. For more information, see Cleaning up (#clean-up).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Install and initialize the Cloud SDK (https://cloud.google.com/sdk/docs/).

Background

This tutorial uses IAP to authenticate users. This is only one of several possible approaches. To
learn more about the various methods to authenticate users, see the Authentication concepts
 (#authentication_concepts) section.

The Hello user-email-address app

The app for this tutorial is a minimal Hello world App Engine app, with one non-typical feature:
instead of "Hello world" it displays "Hello user-email-address", where user-email-address
is the authenticated user's email address.

This functionality is possible by examining the authenticated information that IAP adds to each
web request it passes through to your app. There are three new request headers added to each
web request that reaches your app. The �rst two headers are plain text strings that you can use

https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/sdk/docs/

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 3/17

authenticating-users/app.js
 (https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-
users/app.js)

OOGLECLOUDPLATFORM/NODEJS-GETTING-STARTED/BLOB/MASTER/AUTHENTICATING-USERS/APP.JS)

to identify the user. The third header is a cryptographically signed object with that same
information.

X-Goog-Authenticated-User-Email: A user's email address identi�es them. Don't store
personal information if your app can avoid it. This app doesn't store any data; it just
echoes it back to the user.

X-Goog-Authenticated-User-Id: This user ID assigned by Google doesn't show
information about the user, but it does allow an app to know that a logged-in user is the
same one that was previously seen before.

X-Goog-Iap-Jwt-Assertion: You can con�gure Google Cloud apps to accept web requests
from other cloud apps, bypassing IAP, in addition to internet web requests. If an app is so
con�gured, it's possible for such requests to have forged headers. Instead of using either
of the plain text headers previously mentioned, you can use and verify this
cryptographically signed header to check that the information was provided by Google.
Both the user's email address and a persistent user ID are available as part of this signed
header.

If you are certain that the app is con�gured so that only internet web requests can reach it, and
that no one can disable the IAP service for the app, then retrieving a unique user ID takes only a
single line of code:

userId = req.header('X-Goog-Authenticated-User-ID') :? null;

However, a resilient app should expect things to go wrong, including unexpected con�guration
or environmental issues, so we instead recommend creating a function that uses and veri�es
the cryptographically signed header. That header's signature cannot be forged, and when
veri�ed, can be used to return the identi�cation.

Create the source code

1. Use a text editor to create a �le named app.js, and paste the following code in it:

const express = require('express');
const got = require('got');

https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js
https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 4/17

const jwt = require('jsonwebtoken');

const app = express();

// Cache externally fetched information for future invocations
let certs;
let aud;

async function certificates() {
 if (!certs) {
 let response = await got('https://www.gstatic.com/iap/verify/public_key');
 certs = JSON.parse(response.body);
 }

 return certs;
}

async function getMetadata(itemName) {
 const endpoint = 'http://metadata.google.internal';
 const path = '/computeMetadata/v1/project/';
 const url = endpoint + path + itemName;

 let response = await got(url, {
 headers: {'Metadata-Flavor': 'Google'},
 });
 return response.body;
}

async function audience() {
 if (!aud) {
 let project_number = await getMetadata('numeric-project-id');
 let project_id = await getMetadata('project-id');

 aud = '/projects/' + project_number + '/apps/' + project_id;
 }

 return aud;
}

async function validateAssertion(assertion) {
 if (!assertion) {
 return {};
 }
 // Decode the header to determine which certificate signed the assertion
 const encodedHeader = assertion.split('.')[0];

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 5/17

 const decodedHeader = Buffer.from(encodedHeader, 'base64').toString('utf8');
 const header = JSON.parse(decodedHeader);
 const keyId = header.kid;

 // Fetch the current certificates and verify the signature on the assertion
 const certs = await certificates();
 const payload = jwt.verify(assertion, certs[keyId]);

 // Check that the assertion's audience matches ours
 const aud = await audience();
 if (payload.aud !== aud) {
 throw new Error('Audience mismatch. {$payload.aud} should be {$aud}.');
 }

 // Return the two relevant pieces of information
 return {
 email: payload.email,
 sub: payload.sub,
 };
}

app.get('/', async (req, res) => {
 const assertion = req.header('X-Goog-IAP-JWT-Assertion');
 let email = 'None';
 try {
 const info = await validateAssertion(assertion);
 email = info.email;
 } catch (error) {
 console.log(error);
 }
 res
 .status(200)
 .send(`Hello ${email}`)
 .end();
});

// Start the server
const PORT = process.env.PORT || 8080;
app.listen(PORT, () => {
 console.log(`App listening on port ${PORT}`);
 console.log('Press Ctrl+C to quit.');
});

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 6/17

authenticating-users/package.json
 (https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-
users/package.json)

LOUDPLATFORM/NODEJS-GETTING-STARTED/BLOB/MASTER/AUTHENTICATING-USERS/PACKAGE.JSON)

This app.js �le is explained in detail in the Understanding the code
 (#understanding_the_code) section later in this tutorial.

2. Create another �le called package.json, and paste the following into it:

The package.json �le lists any Node.js dependencies your app needs. jsonwebtoken
provides the JWT checking and decoding function.

3. Create a �le named app.yaml and put the following text in it:

{
 "name": "iap-authentication",
 "description": "Minimal app to use authentication information from IAP.",
 "private": true,
 "license": "Apache-2.0",
 "author": "Google LLC",
 "repository": {
 "type": "git",
 "url": "https://github.com/GoogleCloudPlatform/getting-started-nodejs.git"
 },
 "engines": {
 "node": ">=10.0.0"
 },
 "scripts": {
 "start": "node app.js",
 "test": "mocha --exit test/*.test.js"
 },
 "dependencies": {
 "express": "^4.17.1",
 "got": "^9.6.0",
 "jsonwebtoken": "^8.5.1"
 },
 "devDependencies": {
 "mocha": "^6.1.4",
 "supertest": "^4.0.2"
 }
}

https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/package.json
https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/package.json

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 7/17

authenticating-users/app.yaml
 (https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-
users/app.yaml)

GLECLOUDPLATFORM/NODEJS-GETTING-STARTED/BLOB/MASTER/AUTHENTICATING-USERS/APP.YAML)

authenticating-users/app.js
 (https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-
users/app.js)

OOGLECLOUDPLATFORM/NODEJS-GETTING-STARTED/BLOB/MASTER/AUTHENTICATING-USERS/APP.JS)

The app.yaml �le tells App Engine which language environment your code requires.

Understanding the code

This section explains how the code in the app.js �le works. If you want to run the app, you can
skip ahead to the Deploy the app (#deploying_the_app) section.

The following code is in the app.js �le. When the app receives an HTTP GET, the switch case for
/ is invoked:

The function gets the JWT assertion header value that IAP added from the incoming request
and calls a function to validate that cryptographically signed value. The �rst value returned
(email address) is then used in a minimal web page that it creates and returns.

Copyright 2019 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

runtime: nodejs10

app.get('/', async (req, res) => {
 const assertion = req.header('X-Goog-IAP-JWT-Assertion');

https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.yaml
https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.yaml
https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js
https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 8/17

authenticating-users/app.js
 (https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-
users/app.js)

OOGLECLOUDPLATFORM/NODEJS-GETTING-STARTED/BLOB/MASTER/AUTHENTICATING-USERS/APP.JS)

The validate_assertion function uses the jsonwebtoken.verify() function from the third-
party jsonwebtoken library to verify that the assertion is properly signed, and to extract the
payload information from the assertion. That information is the authenticated user's email
address and a persistent unique ID for the user. If the assertion cannot be decoded, this
function throws and prints a message to log the error.

Validating a JWT assertion requires knowing the public key certi�cates of the entity that signed
the assertion (Google in this case), and the audience the assertion is intended for. For an App
Engine app, the audience is a string with Google Cloud project identi�cation information in it.
This function gets those certi�cates and the audience string from the functions preceding it.

 let email = 'None';
 try {
 const info = await validateAssertion(assertion);
 email = info.email;
 } catch (error) {
 console.log(error);
 }
 res
 .status(200)
 .send(`Hello ${email}`)
 .end();
});

async function validateAssertion(assertion) {
 if (!assertion) {
 return {};
 }
 // Decode the header to determine which certificate signed the assertion
 const encodedHeader = assertion.split('.')[0];
 const decodedHeader = Buffer.from(encodedHeader, 'base64').toString('utf8');
 const header = JSON.parse(decodedHeader);
 const keyId = header.kid;

 // Fetch the current certificates and verify the signature on the assertion
 const certs = await certificates();
 const payload = jwt.verify(assertion, certs[keyId]);

https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js
https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 9/17

authenticating-users/app.js
 (https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-
users/app.js)

OOGLECLOUDPLATFORM/NODEJS-GETTING-STARTED/BLOB/MASTER/AUTHENTICATING-USERS/APP.JS)

You can look up the Google Cloud project's numeric ID and name and put them in the source
code yourself, but the audience function does that for you by querying the standard metadata
service made available to every App Engine app. Because the metadata service is external to
the app code, that result is saved in a global variable that is returned without having to look
metadata up in subsequent calls.

The App Engine metadata service (and similar metadata services for other Google Cloud
computing services) looks like a web site and is queried by standard web queries. However, the
metadata service isn't actually an external site, but an internal feature that returns requested
information about the running app, so it is safe to use http instead of https requests. It's used
to get the current Google Cloud identi�ers needed to de�ne the JWT assertion's intended
audience.

 // Check that the assertion's audience matches ours
 const aud = await audience();
 if (payload.aud !== aud) {
 throw new Error('Audience mismatch. {$payload.aud} should be {$aud}.');
 }

 // Return the two relevant pieces of information
 return {
 email: payload.email,
 sub: payload.sub,
 };
}

async function audience() {
 if (!aud) {
 let project_number = await getMetadata('numeric-project-id');
 let project_id = await getMetadata('project-id');

 aud = '/projects/' + project_number + '/apps/' + project_id;
 }

 return aud;
}

https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js
https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 10/17

authenticating-users/app.js
 (https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-
users/app.js)

OOGLECLOUDPLATFORM/NODEJS-GETTING-STARTED/BLOB/MASTER/AUTHENTICATING-USERS/APP.JS)

Veri�cation of a digital signature requires the public key certi�cate of the signer. Google
provides a web site that returns all of the currently used public key certi�cates. These results
are cached in case they're needed again in the same app instance.

Deploying the app

Now you can deploy the app and then enable IAP to require users to authenticate before they
can access the app.

1. In your terminal window, go to the directory containing the app.yaml �le, and deploy the
app to App Engine:

2. When prompted, select a nearby region.

3. When asked if you want to continue with the deployment operation, enter Y.

Within a few minutes, your app is live on the internet.

4. View the app:

In the output, copy web-site-url, the web address for the app.

5. In a browser window, paste web-site-url to open the app.

async function certificates() {
 if (!certs) {
 let response = await got('https://www.gstatic.com/iap/verify/public_key');
 certs = JSON.parse(response.body);
 }

 return certs;
}

gcloud app deploy

gcloud app browse

https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js
https://github.com/GoogleCloudPlatform/nodejs-getting-started/blob/master/authenticating-users/app.js

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 11/17

No email is displayed because you're not yet using IAP so no user information is sent to
the app.

Enable IAP

Now that an App Engine instance exists, you can protect it with IAP:

1. In the Google Cloud Console, go to the Identity-Aware Proxy page.

GO TO IDENTITY-AWARE PROXY PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/SECURITY/IAP)

2. Because this is the �rst time you've enabled an authentication option for this project, you
see a message that you must con�gure your OAuth consent screen before you can use
IAP.

Click Con�gure Consent Screen.

3. On the OAuth Consent Screen tab of the Credentials page, complete the following �elds:

In the Application name �eld, enter IAP Example.

In the Support email �eld, enter your email address.

In the Authorized domain �eld, enter the hostname portion of the app's URL, for
example, iap-example-999999.appspot.com. Press the Enter key after entering the
hostname in the �eld.

In the Application homepage link �eld, enter the URL for your app, for example,
https://iap-example-999999.appspot.com/.

In the Application privacy policy line �eld, use the same URL as the homepage link
for testing purposes.

4. Click Save. When prompted to create credentials, you can close the window.

5. In the Cloud Console, go to the Identity-Aware Proxy page.

GO TO IDENTITY-AWARE PROXY PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/SECURITY/IAP)

6. To refresh the page, click Refresh . The page displays a list of resources you can
protect.

7. In the IAP column, click to turn on IAP for the app.

8. In your browser, go to web-site-url again.

https://console.cloud.google.com/security/iap
https://console.cloud.google.com/security/iap

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 12/17

9. Instead of the web page, there is a login screen to authenticate yourself. When you log in,
you're denied access because IAP doesn't have a list of users to allow through to the app.

Add authorized users to the app

1. In the Cloud Console, go to the Identity-Aware Proxy page.

GO TO IDENTITY-AWARE PROXY PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/SECURITY/IAP)

2. Select the checkbox for the App Engine app, and then click Add Member.

3. Enter allAuthenticatedUsers, and then select the Cloud IAP/IAP-Secured Web App User
role.

4. Click Save.

Now any user that Google can authenticate can access the app. If you want, you can restrict
access further by only adding one or more people or groups as members:

Any Gmail or G Suite email address

A Google Group email address

A G Suite domain name

Access the app

1. In your browser, go to web-site-url.

2. To refresh the page, click Refresh .

3. On the login screen, log in with your Google credentials.

The page displays a "Hello user-email-address" page with your email address.

If you still see the same page as before, there might be an issue with the browser not fully
updating new requests now that you enabled IAP. Close all browser windows, reopen
them, and try again.

Authentication concepts

There are several ways an app can authenticate its users and restrict access to only authorized
users. Common authentication methods, in decreasing level of effort for the app, are listed in

https://console.cloud.google.com/security/iap

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 13/17

the following sections.

Option Advantages Disadvantages

App
authentication

App can run on any platform,
with or without an internet
connection

Users don't need to use any other
service to manage
authentication

App must manage user credentials securely, guard
against disclosure

App must maintain session data for logged-in users

App must provide user registration, password
changes, password recovery

OAuth2

App can run on any internet-
connected platform, including a
developer workstation

App doesn't need user
registration, password changes,
or password recovery functions.

Risk of user information
disclosure is delegated to other
service

New login security measures
handled outside the app

Users must register with the identity service

App must maintain session data for logged-in users

IAP

App doesn't need to have any
code to manage users,
authentication, or session state

App has no user credentials that
might be breached

App can only run on platforms supported by the
service. Speci�cally, certain Google Cloud services
that support IAP, such as App Engine.

App-managed authentication

With this method, the app manages every aspect of user authentication on its own. The app
must maintain its own database of user credentials and manage user sessions, and it needs to
provide functions to manage user accounts and passwords, check user credentials, as well as
issue, check, and update user sessions with each authenticated login. The following diagram
illustrates the app-managed authentication method.

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 14/17

As shown in the diagram, the app must store user credentials so it can provide a way for a user
to log in, after which it creates and maintains information about the user's session. When the
user makes a request to the app, the request must include session information that the app is
responsible for verifying.

The main advantage of this approach is that it is self-contained and under the control of the
app. The app doesn't even need to be available on the internet. The main disadvantage is that
the app is now responsible for providing all account management functionality and protecting
all sensitive credential data.

External authentication with OAuth2

A good alternative to handling everything within the app is to use an external identity service,
such as Google, that handles all user account information and functionality and is responsible
for safeguarding sensitive credentials. When a user tries to log in to the app the request is
redirected to the identity service, which authenticates the user and then redirect the request
back to the app with necessary authentication information provided. For more information, see
Authenticating as an end user (https://cloud.google.com/docs/authentication/end-user).

The following diagram illustrates the external authentication with the OAuth2 method.

https://cloud.google.com/docs/authentication/end-user

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 15/17

The �ow in the diagram begins when the user sends a request to access the app. Instead of
responding directly, the app redirects the user's browser to Google's identity platform, which
displays a page to log in to Google. After successfully logging in, the user's browser is directed
back to the app. This request includes information that the app can use to look up information
about the now authenticated user, and the app now responds to the user.

This method has many advantages for the app. It delegates all account management
functionality and risks to the external service, which can improve login and account security
without the app having to change. However, as is shown in the preceding diagram, the app
must have access to the internet to use this method. The app is also responsible for managing
sessions after the user is authenticated.

Identity-Aware Proxy

The third approach, which this tutorial covers, is to use IAP to handle all authentication and
session management with any changes to the app. IAP intercepts all web requests to your app,
blocks any that haven't been authenticated, and passes others through with user identity data
added to each request.

The request handling is shown in the following diagram.

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 16/17

Requests from users are intercepted by IAP, which blocks unauthenticated requests.
Authenticated requests are passed on to the app, provided that the authenticated user is in the
list of allowed users. Requests passed through IAP have headers added to them identifying the
user who made the request.

The app no longer needs to handle any user account or session information. Any operation that
needs to know a unique identi�er for the user can get that directly from each incoming web
request. However, this can only be used for computing services that support IAP, such as App
Engine and load balancers. You cannot use IAP on a local development machine.

Cleaning up

To avoid incurring charges to your Google Cloud Platform account for the resources used in
this tutorial:

The easiest way to eliminate billing is to delete the project that you created for the tutorial.

To delete the project:

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

1/23/2020 Authenticating users with Node.js | Node.js | Google Cloud

https://cloud.google.com/nodejs/getting-started/authenticate-users 17/17

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

https://console.cloud.google.com/iam-admin/projects
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

