
1/25/2020 Profiling Concepts | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/concepts-profiling/ 1/5

This page provides some general background on pro�ling, on the types of pro�ling available with
Stackdriver Pro�ler, and information about them.

Pro�ling is a form of dynamic code analysis. That is, pro�ling lets you capture characteristics of the
code as it runs (that's the dynamic aspect). It lets you look at the actual resource consumption or
performance traits of the program.

Pro�ling your code during development and testing can help you optimize the design of the code and
�nd bugs, reducing the risk of catastrophic failures in production.

Pro�ling production code can help you anticipate when future problems might arise and help
diagnose problems that do occur.

Unlike static code analysis, which examines the source code of the application rather than the
running application, pro�ling puts an additional load on the program as it collects statistics about the
running code. In addition, pro�ling needs a way to collect and retrieve these statistics from the
execution environment. This additional work adds load to the program.

There are many ways to collect pro�ling data, and many ways to try to minimize the additional load
on the running application. These typically involve tradeoffs between the accuracy of the pro�led
characteristics and the drag on the running application.

Stackdriver Pro�ler is a statistical, or sampling, pro�ler. It does not require pervasive changes to the
program code to collect data. Instead, a piece of code, called the pro�ling agent, is essentially
attached to the code, where it can periodically look at the call stack of the program to collect
information about, for example, CPU usage or memory usage.

Sampling pro�lers are typically less accurate and precise, because they sample the pro�led traits, but
they have minimal impact on the performance of the pro�led application, particularly important in
continuous pro�ling of production code. Accuracy improves as the number of samples improves,
though it is a statistical approximation.

1/25/2020 Profiling Concepts | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/concepts-profiling/ 2/5

For information on running the Stackdriver Pro�ler agent with your application, see the following
pages:

Pro�ling Go applications (/pro�ler/docs/pro�ling-go)

Pro�ling Java applications (/pro�ler/docs/pro�ling-java)

Pro�ling Node.js applications (/pro�ler/docs/pro�ling-nodejs)

Pro�ling Python applications (/pro�ler/docs/pro�ling-python)

Pro�ling applications running outside Google Cloud (/pro�ler/docs/pro�ling-external)

After collecting pro�ler data, you analyze it using the Pro�ler interface (/pro�ler/docs/using-pro�ler).

Stackdriver Pro�ler supports different types of pro�ling based on the language in which a program is
written. The following table summarizes the supported pro�le types by language:

Pro�le type Go Java Node.js Python

CPU time Y Y Y

Heap Y Y Y

Allocated heap Y

Contention Y

Threads Y

Wall time Y Y Y

CPU time is the time the CPU spends executing a block of code.

Wall-clock time (also called wall time) is the time it takes to run a block of code.

The CPU time for a function tells you how long it took to execute the code in the function. This
measures the time the CPU was busy processing instructions. It doesn't include the time the CPU was
waiting (or processing instructions for something else).

https://cloud.google.com/profiler/docs/profiling-go
https://cloud.google.com/profiler/docs/profiling-java
https://cloud.google.com/profiler/docs/profiling-nodejs
https://cloud.google.com/profiler/docs/profiling-python
https://cloud.google.com/profiler/docs/profiling-external
https://cloud.google.com/profiler/docs/using-profiler

1/25/2020 Profiling Concepts | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/concepts-profiling/ 3/5

Wall-clock time for a function measures the time elapsed between entering and exiting a function.
This includes time waiting for locks for database access, waiting for thread synchronization, waiting
for locks, and so forth. The wall time for a block of code can never be less than the CPU time.

When the number of samples is low, the wall time can appear to be less than the CPU time in a sampling pro�le such a

driver Pro�ler.

A block of code can take a long time to run but actually require little CPU time. If the wall time is
much greater than the CPU time, the code spends a lot of time waiting for other things to happen. A
block of code that spends a vast amount of its time waiting for other things to happen might indicate
a resource bottleneck, where too many requestors are trying to access some limited resource.

If the CPU time is close to the wall time, the block of code is CPU intensive; almost all the time it takes
to run is spent by the CPU. Long-running CPU-intensive blocks of code might be candidates for
optimization: is there a more CPU-e�cient way to do the work, something that involves fewer or
faster operations?

Heap consumption (also called heap) is the amount of memory allocated in the program's heap
when the pro�le is collected.

Heap allocation (also called allocated heap) is the total amount of memory that was allocated
in the program's heap, including memory that is freed and no longer in use.

As programs run, they consume memory. They create objects; those objects take up space. They call
functions; those functions take up space.

A well-behaved program uses memory e�ciently and judiciously. It uses only the memory it needs;
that is, it doesn't have an overly large memory footprint. It also returns that memory when it no longer
needs it; that is, it doesn't leak memory.

A program that consumes more memory than it truly needs or that holds onto memory it no longer
needs might start slowly, might gradually slow down or even crash, and might even affect resources
available to other applications. A program which allocates memory more frequently than it truly
needs, in a garbage collected language, creates more work for the garbage collector.

Pro�ling heap consumption helps you �nd potential ine�ciencies and memory leaks in your
programs. Pro�ling heap allocations helps you know which allocations are causing the most work for
the garbage collector.

1/25/2020 Profiling Concepts | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/concepts-profiling/ 4/5

Applications that create threads can suffer from blocked threads, threads that are created but never
actually get to run, and from thread leaks, where the number of threads created keeps increasing. The
�rst problem is one cause of the second.

In a multi-threaded program, the time spent waiting to serialize access to a shared resource can be
signi�cant. Understanding contention behavior can guide the design of the code and provide
information for performance tuning.

To use the Stackdriver Pro�ler with your service, for all languages except Java, you need to modify
your service to instantiate a pro�ling agent when your service starts. For Java applications, you need
to modify how you start your service. For each instance of the application, a pro�ling agent is
instantiated.

The role of an agent is to capture pro�le data from your service and to transmit this data to the
Pro�ler backend using the Pro�ler API. Each pro�le is for a single instance of a service and it includes
four �elds that uniquely identify its deployment:

GCP project

Service name

Service zone

Service version

When an agent is ready to capture a pro�le, it issues a Pro�ler API command to the Pro�ler backend.
The backend receives this request and, in the simplest scenario, immediately replies to the agent. The
reply speci�es the type of pro�le to capture. In response, the agent captures the pro�le and transmits
it to the backend. Lastly, the Pro�ler backend associates the pro�le with your Google Cloud project.
You can then view and analyze it by using the Pro�ler UI.

The actual handshake sequence is more complex than described in the previous paragraph. For
example, when the Pro�ler receives a request from an agent that is ready to collect a pro�le, the
backend checks its database to determine if it has received previous requests from the agent. If not,

1/25/2020 Profiling Concepts | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/concepts-profiling/ 5/5

the backend adds the agent information to its database. A new deployment is created if the agent
deployment �elds don't match those of any other recorded agent.

Each minute, on average, and for each deployment and each pro�le type, the backend selects an
agent and instructs it to capture a pro�le. For example, if the agents for a deployment support Heap
and Wall time pro�ling, on average, 2 pro�les are captured each minute:

For all pro�le types except heap consumption and thread consumption, a single pro�le
represents data collected for 10 seconds.

For heap consumption and thread pro�les, each pro�le is collected instantaneously.

The key observation is that after the agent noti�es the Pro�ler backend that it's ready to capture data,
the agent idles until it receives a reply from the backend that speci�es the type of pro�le to capture. If
you have 10 instances of a service running in the same deployment, then you create 10 pro�ling
agents. However, most of the time these agents are idle. Over a 10-minute period, you can expect 10
pro�les; each agent receives one reply for each pro�le type, on average. There is some randomization
involved, so the actual number might vary.

The Pro�ler backend uses Pro�ler API quotas and the pro�le deployment �elds to limit the pro�les
ingested. For information on viewing and managing your Pro�ler quotas, see Quotas & limits
 (/pro�ler/quotas).

https://cloud.google.com/profiler/quotas

