
1/25/2020 Using filters | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/filtering-profiles/ 1/7

Pro�ler samples (/pro�ler/docs/samples) describes several Go language samples stored in a GitHub repository. You

oad, and then run these samples in the Cloud Shell, on Google Cloud, or on a local Linux box. The images on this page

Service named docdemo-service. For information on how to generate your own data with the same con�guration,

mple hotapp (/pro�ler/docs/samples#hotapp).

Stackdriver Pro�ler lets you add �lters to control how the information in the selected pro�les is
displayed. For example, you can add a �lter to hide particular frames or call stacks. Adding and
removing �lters doesn't change your set of selected pro�les.

Each �lter is speci�ed by a prede�ned FILTER-OPTION that is paired with a user-de�ned VALUE:

Each �lter that you add is displayed on the �lter bar. In this example, there is one �lter that displays
Metric : Bytes:

Pro�ler automatically creates a �lter with a FILTER-OPTION of Metric and a VALUE based on your
selected pro�le type. You can change VALUE for some pro�le types. You cannot remove this �lter.

To add a �lter, use one of the following approaches:

Click Filters , select an option from the list, and then enter the value.

Click the gray text Add pro�le data �lter in the �lter bar, and then enter the �lter option and
value.

For the Focus, Show from frame, and Show stacks �lter options, you can also place your
pointer on the frame, and then select the option from the frame tooltip.

To remove a �lter, click Close  on the �lter.

When preparing the data to display, Pro�ler searches for matches between a frame and a �lter. When
a match occurs Pro�ler uses the FILTER-OPTION to determine what action to execute. A frame
matches the �lter when the frame's function name or the �lename of the function's source contains

https://cloud.google.com/profiler/docs/samples
https://cloud.google.com/profiler/docs/samples#hotapp

1/25/2020 Using filters | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/filtering-profiles/ 2/7

VALUE. A case-sensitive comparison is performed. For example, if the �lter is Hide frames : oo, then
frames with functions named foo, foo1, and busyloop match are hidden from the �ame graph.

To set the pro�le type aggregation mode, use the Metric �lter. For example, if you select a Heap
pro�le type, you have the choice between visualizing the data in terms of Bytes and Objects.

The choices available for the Metric �lter depend on the programming language and the selected
Pro�le type:

For CPU time pro�les, the only choice is CPU time.

For Heap pro�les, the choices are:

Bytes

Objects

For Allocated Heap pro�les, the choices are:

Total alloc bytes

Total alloc objects

For Wall time pro�les, the choices are:

Count

Wall time

For Threads pro�les, the only choice is Goroutine.

For Contention pro�les, the choices are:

Delay

Contentions

For more information about types of pro�ling metrics, see Pro�ling concepts
 (/pro�ler/docs/concepts-pro�ling).

For example, the following screenshot shows the CPU consumption of a program:

https://cloud.google.com/profiler/docs/concepts-profiling

1/25/2020 Using filters | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/filtering-profiles/ 3/7

Here, you can see that the busyloop routine calls foo1 and foo2, both of which call various other
routines. You can add �lters to further restrict the graph only to the data of interest.

When you use the Focus �lter, you select a single function and the �ame graph displays the code
paths that �ow into, and out of, that speci�c function.

For details how to focus the graph and interpret the results, see Focusing the graph
 (/pro�ler/docs/focusing-pro�les).

To display all call stacks that contain a frame that matches the �lter value and to hide all other call
stacks, use the Show stacks �lter. The graph shows the callers and callees of the function, that is,
everything that calls the matching function, and everything it calls.

This �lter performs a case sensitive substring test. A match occurs if the frame function contains the
�lter value.

To restrict the CPU-usage graph from the previous example to show only the call stacks that involve
the function foo1, set a Show stacks �lter for foo1:

https://cloud.google.com/profiler/docs/focusing-profiles

1/25/2020 Using filters | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/filtering-profiles/ 4/7

Hide all call stacks that contain a frame that matches the �lter value. This �lter is often useful when
you want to hide uninteresting stacks. For example, with Java applications, adding a Hide stacks:
unsafe.park �lter is common.

This �lter performs a case sensitive substring test. A match occurs if the frame function contains the
�lter value.

To display all call stacks, starting from the frame that matches the �lter value and to hide all other
call stacks, use the Show from frame �lter. The resulting graph shows the call stacks from the
named function down. This �lter is useful if your function is called from many places, and you want
to see the total consumption attributable to it.

For example, to only show calls originating from the baz function, set a Show from frame �lter for
baz:

This �lter performs a case sensitive substring test. A match occurs if the frame function contains the
�lter value.

To hide from view all frames that match the �lter value, use the Hide frames �lter. The graph shows
the callers of the function, and any callees of the function are collected together. This �lter is useful
for removing irrelevant frames from the graph.

For example, to hide the frames for both foo1 and foo2, set a Hide frames �lter for foo. Both foo1
and foo2 match, so both are removed from the graph. Because both of them call the bar and baz
routines, the data for each of those functions is aggregated together.

1/25/2020 Using filters | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/filtering-profiles/ 5/7

This �lter performs a case sensitive substring test. A match occurs if the frame function contains the
�lter value.

To highlight all frames whose function names match the �lter value, use the Highlight �lter. The
function remains in normal color mode, but the call sequences are colored in more subdued tones.

For example, here is a graph with no highlighting:

Here's the same graph with highlighting requested for the baz function:

This �lter performs a case sensitive substring test. A match occurs if the frame function contains the
�lter value.

By default, the frame color corresponds, where possible, to the function's package. If package
information is unavailable, as with Node.js, the names of the source �les are used to color the

1/25/2020 Using filters | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/filtering-profiles/ 6/7

function blocks. With the default setting, a change in a call stack frame color means a transition
from one package to another. The default option corresponds to the Color mode �lter with a value of
Name.

To color the frames in the �ame graph by the consumption of a function and its children, add a Color
mode �lter with the value of Total. If a function is called through multiple call stacks, then the color is
determined by the metric consumption for all call stacks. For example, the main and busyloop are
colored red. These two frames consume the most CPU time. The frames labeled foo2 and baz are a
deep orange, while the frame labeled foo1 is a lighter orange. The frames for bar and load are the
lightest. This �ame graph illustrates that foo2 consumes more CPU time than foo1 but less than
busyloop:

To color the frames in the �ame graph by the function's metric consumption but exclude the metric
consumption of its children, add a Color mode �lter with the value of Self. For example, this �lter
shows that the baz function consumes more CPU time than any other function:

For information on focusing the graph on a single function, see Focusing the graph
 (/pro�ler/docs/focusing-pro�les).

For information on comparing pro�les collected by different deployments of your service, see
Comparing pro�les (/pro�ler/docs/comparing-pro�les).

To learn how to download your pro�le data, see Downloading pro�les
 (/pro�ler/docs/downloading-pro�les).

For information on using the Pro�ler agent to collect pro�ling data for your services, see:

https://cloud.google.com/profiler/docs/focusing-profiles
https://cloud.google.com/profiler/docs/comparing-profiles
https://cloud.google.com/profiler/docs/downloading-profiles

1/25/2020 Using filters | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/filtering-profiles/ 7/7

Pro�ling Go applications (/pro�ler/docs/pro�ling-go)

Pro�ling Java applications (/pro�ler/docs/pro�ling-java)

Pro�ling Node.js applications (/pro�ler/docs/pro�ling-nodejs)

Pro�ling Python applications (/pro�ler/docs/pro�ling-python)

Pro�ling applications running outside Google Cloud (/pro�ler/docs/pro�ling-external)

https://cloud.google.com/profiler/docs/profiling-go
https://cloud.google.com/profiler/docs/profiling-java
https://cloud.google.com/profiler/docs/profiling-nodejs
https://cloud.google.com/profiler/docs/profiling-python
https://cloud.google.com/profiler/docs/profiling-external

