
1/25/2020 Focusing the graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/focusing-profiles/ 1/7

When you use the Focus �lter, you select a single function, and the �ame graph displays the
code paths that �ow into, and out of, that speci�c function. A focused graph lets you perform
two common tasks:

1. Analyzing the aggregate resource consumption of a given function that is called from
multiple places.

2. Analyzing the proportion of time spent in a function for different callers of the function.

For example, how do you analyze the resource consumption around the Sort function by using
the standard �ame graph?

In the next section, we focus the graph on Sort and answer this question. The �ame graphs on
this page were constructed with the Color mode and Compare to set to the default values of
Name and None respectively.

The graph built by the Focus �lter effectively creates two �ame graphs for the speci�ed
function and joins them together:

1/25/2020 Focusing the graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/focusing-profiles/ 2/7

In the preceding graph, the frame corresponding to the Sort function is full width and
highlighted. The frame text includes the function name, a percentage, and the number of
pro�les used for the analysis. In this case, the metrics indicate that the Sort function, in
aggregate, consumed 8.85% of the CPU time.

The bottom half of the preceding graph treats the function Sort as the starting point of a
standard �ame graph and shows all of its callees. You can create this part with the standard
�ame graph using the Show from frame �lter:

The top half of the graph shows the callers of Sort with the callees hidden. You can make an
approximation of the top half using a series of �lters. Start by adding a Show stacks �lter for
Sort. Next, for each function called by Sort, add either a Hide stacks or Hide frames. In this
situation, you would add a Hide stacks for quickSort to eliminate this function and its children,
and then add Hide frames for Len and maxDepth:

1/25/2020 Focusing the graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/focusing-profiles/ 3/7

Using these �lters, the approximation of the top half of the focused graph shows that the Sort
function is reached through different call stacks. However, the metrics aren't aggregated so the
graph doesn't illustrate overall metric consumption by Sort.

The focused graph is a little different than a graph that just combines the two approximations:

There is a single frame for the focus function Sort.

The focus function frame is highlighted, is full-width frame, and displays metrics that are
the aggregation of all call stacks.

There are multiple call stacks, each beginning with a root frame, so you can view the
entire call stack.

If you select a frame in a focused graph, then the �ame graph is redrawn with that frame's call
stack displayed in more detail. If the frame is reached through multiple call stacks, each of
those call stacks is displayed. Call stacks that don't include the frame are hidden from view. To
restore the graph to its original state, select the frame that corresponds to the focus function.

In the previous example, Sort is called by (*byFreq).sort and by (*byLiteral).sort. To view
the call stack for (*byLiteral).sort in more detail, select that frame. You can select another
frame and further re�ne the call stacks being displayed:

1/25/2020 Focusing the graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/focusing-profiles/ 4/7

To restore a focused �ame graph to its original state, select the frame that displays the value of
the Focus �lter. In this case, select the gray frame with the label Sort. Note that to restore a
standard �ame graph to its original state you select the root frame.

To analyze a focused �ame graph, you use the same controls and �lters that you use to
analyze a standard �ame graph. However, there are differences in how the graphs interact with
the pointer:

If your pointer hovers on a frame, the tooltip displays metric data. For a standard �ame
graph, total metric data for the frame is shown. For a focused �ame graph, aggregate
metric data for the function is shown.

If you select a frame, the �ame graph is redrawn with that frame displayed full width. To
restore a standard �ame graph to its original form, you must select the top frame. To
restore a focused �ame graph to its original form, you must select the frame that displays
the value of the focus �lter.

For information on the focused graph when you are comparing pro�les, see Focusing a
comparison (/pro�ler/docs/comparing-pro�les#with-focus).

There are different methods you can use to set a focus �lter but they result in the same graph.

https://cloud.google.com/profiler/docs/comparing-profiles#with-focus

1/25/2020 Focusing the graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/focusing-profiles/ 5/7

Place your pointer on the frame of interest, and then click Focus in the frame tooltip. The focus
function is extracted from the frame. In this example the �ame graph, which is expanded
around the function (*huffmanBitWriter).write, displays three different call stacks:

To focus the �ame graph on a speci�c function, click List , and then select a row from the
Select focus function table:

1/25/2020 Focusing the graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/focusing-profiles/ 6/7

If the function you selected can be called through different call stacks, each call stack is shown
in the �ame graph.

You can sort the table rows in ascending  or descending  order by selecting a table
header element. Each row in the table displays a function name and statistics related to the
function's execution. This table shows that the (*compressor).deflate function requires 1.46 s
to execute, with 971 ms spent in the function itself and the remainder of the time spent in its
call stack. One percentage column reports that 62% of the total execution time is spent in the
function (*compressor).deflate. Another column reports that 93% of the time,
(*compressor).deflate or a function in its call stack, is executing. Lastly, the count column
reports that there are 2 sequences that invoke the function (*compressor).deflate.

When you are comparing pro�les, the content of the focus list is different. For more
information, go to Focusing a comparison (/pro�ler/docs/comparing-pro�les#with-focus).

Click the gray text Add pro�le data �lter in the �lter bar, and then enter Focus: and a string that
identi�es the function to focus on. You can use a substring, including package pre�xes, or the
full name. When you supply an ambiguous string, the function that is the best match to the
string is selected.

If you prefer, you can click Filters, select Focus, and then enter the identifying string.

If the function you selected can be called through different call stacks, each call stack is shown
in the �ame graph.

https://cloud.google.com/profiler/docs/comparing-profiles#with-focus

1/25/2020 Focusing the graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/focusing-profiles/ 7/7

To remove the focus �lter, click Close  on the �lter.

For information on comparing pro�les collected by different deployments of your service,
see Comparing pro�les (/pro�ler/docs/comparing-pro�les).

To learn how to download your pro�le data, see Downloading pro�les
 (/pro�ler/docs/downloading-pro�les).

For information on using the Pro�ler agent to collect pro�ling data for your services, see:

Pro�ling Go applications (/pro�ler/docs/pro�ling-go)

Pro�ling Java applications (/pro�ler/docs/pro�ling-java)

Pro�ling Node.js applications (/pro�ler/docs/pro�ling-nodejs)

Pro�ling Python applications (/pro�ler/docs/pro�ling-python)

Pro�ling applications running outside Google Cloud (/pro�ler/docs/pro�ling-external)

https://cloud.google.com/profiler/docs/comparing-profiles
https://cloud.google.com/profiler/docs/downloading-profiles
https://cloud.google.com/profiler/docs/profiling-go
https://cloud.google.com/profiler/docs/profiling-java
https://cloud.google.com/profiler/docs/profiling-nodejs
https://cloud.google.com/profiler/docs/profiling-python
https://cloud.google.com/profiler/docs/profiling-external

