
1/25/2020 Interacting with the flame graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/interacting-flame-graph 1/5

Stackdriver Pro�ler displays pro�ling data by using �ame graphs. For a conceptual introduction, see
Flame graphs (/pro�ler/docs/concepts-�ame).

The �ame graph is composed of frames. Each frame represents a function in the service:

The width of a frame corresponds to its consumption of the metric being analyzed. The top
frame, for example, represents the entire service and consumes 100% of the metric being
analyzed. Therefore, this frame is shown as full width.

By default, the frame color corresponds, where possible, to the function's package. If package
information is unavailable, as with Node.js, the names of the source �les are used to color the
function blocks. In a call stack, a change in block color means a transition from one package to
another. You can change change the way the frames are colored. For more information, see
Color mode (/pro�ler/docs/�ltering-pro�les#color-�lter).

The �ame graph shows one or more call stacks with the values averaged over a set of pro�les:

Each individual pro�le represents data collected one time per minute from a single instance of
the con�gured service in a single Compute Engine zone. The collection period for a pro�le
varies with the pro�le type. See Pro�le collection (/pro�ler/docs/concepts-pro�ling#collection) for
more information.

A maximum of 250 pro�les are averaged. If there are more than 250 pro�les available, 250 of
them are selected randomly as a sample set.

The top frame, or "root", in a �ame graph represents the entire service. Under the "root" frame, is
another frame or set of frames making up the second row in the graph. Each of these color-
coded frames is a top-level call made by the service. Under each of those colored function
frames is another set of function frames, each of which is responsible for some part of the
resource of the frame above it. The hierarchy of function frames in the graph represents the call
sequence, and the width of a frame represents that function or method's contribution to the
resource consumption.

For example, the pro�ler graph of the consumed heap for the docdemo-service shows that the service
calls different top-level frames, one of them is the Go runtime's main function. The width of these top-
level frames show the majority of the heap is consumed by the call stack involving Go runtime's main,
application-speci�c main, allocOnce, and allocImpl:

https://cloud.google.com/profiler/docs/concepts-flame
https://cloud.google.com/profiler/docs/filtering-profiles#color-filter
https://cloud.google.com/profiler/docs/concepts-profiling#collection

1/25/2020 Interacting with the flame graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/interacting-flame-graph 2/5

The root frame displays metric consumption information.

When you hold the pointer over a frame in the �ame graph, a frame tooltip opens and displays
additional information about the frame:

Function name

Source �le location

Metric consumption information

In the metric consumption information, the pre�x total indicates that the metric-value and percentage
are for a function and its children. In contrast, the pre�x self indicates the metric-value and
percentage are for the function with the consumption of its children excluded.

The dialog also includes buttons for three �ltering actions:

Focus (/pro�ler/docs/focusing-pro�les)

Show from frame (/pro�ler/docs/�ltering-pro�les#show-from-frame)

Show stacks (/pro�ler/docs/�ltering-pro�les#stack-�lters)

In this example, the tooltip shows that the runtime.main function is located in the
/usr/local/go/src/runtime/proc.go �le. The metric consumption information shows that

https://cloud.google.com/profiler/docs/focusing-profiles
https://cloud.google.com/profiler/docs/filtering-profiles#show-from-frame
https://cloud.google.com/profiler/docs/filtering-profiles#stack-filters

1/25/2020 Interacting with the flame graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/interacting-flame-graph 3/5

runtime.main and its children consume 56.36 MiB of memory, or about 97% of the total memory
consumed by the program:

When you select a frame, the �ame graph is redrawn with that frame shown full width and the colors
higher in the call stack are muted. Selecting on a frame doesn't change any settings, it only changes
how the graph is displayed. To revert to the original view, select the root (top) frame.

In the following example, the pointer is on a tiny frame and it is di�cult to view the call stack. The
tooltip identi�es (*huffmanBitWriter).write as the frame function:

1/25/2020 Interacting with the flame graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/interacting-flame-graph 4/5

After you select the frame, the graph is redrawn, making the call stack more visible:

1/25/2020 Interacting with the flame graph | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/interacting-flame-graph 5/5

To restore a standard �ame graph to the original state, select the root (top) frame. To restore a focused �ame graph

al state, select the frame that displays the value of the Focus �lter. For example, if your �lter bar contains Focus: So

the frame with the label Sort.

For information on how to suppress, or highlight, frames in the �ame graph, see Using �lters
 (/pro�ler/docs/�ltering-pro�les).

For information on focusing the graph on a single function, see Focusing the graph
 (/pro�ler/docs/focusing-pro�les).

For information on comparing pro�les collected by different deployments of your service, see
Comparing pro�les (/pro�ler/docs/comparing-pro�les).

To download your pro�le data, see Downloading pro�les (/pro�ler/docs/downloading-pro�les).

For information on using the Pro�ler agent to collect pro�ling data for your services, see:

Pro�ling Go applications (/pro�ler/docs/pro�ling-go)

Pro�ling Java applications (/pro�ler/docs/pro�ling-java)

Pro�ling Node.js applications (/pro�ler/docs/pro�ling-nodejs)

Pro�ling Python applications (/pro�ler/docs/pro�ling-python)

Pro�ling applications running outside Google Cloud (/pro�ler/docs/pro�ling-external)

https://cloud.google.com/profiler/docs/filtering-profiles
https://cloud.google.com/profiler/docs/focusing-profiles
https://cloud.google.com/profiler/docs/comparing-profiles
https://cloud.google.com/profiler/docs/downloading-profiles
https://cloud.google.com/profiler/docs/profiling-go
https://cloud.google.com/profiler/docs/profiling-java
https://cloud.google.com/profiler/docs/profiling-nodejs
https://cloud.google.com/profiler/docs/profiling-python
https://cloud.google.com/profiler/docs/profiling-external

