
1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 1/13

This page describes how to modify your Java application to capture pro�ling data and have that
data sent to your Google Cloud project. For general information about pro�ling, see Pro�ling
concepts (/pro�ler/docs/concepts-pro�ling).

Pro�le types for Java:

CPU time

Heap (Alpha, requires Java 11 or App Engine standard environment)

Wall time (not available for Java 8 App Engine standard environment)

Supported Java language versions:

OpenJDK and Oracle JDK for Java 7, 8, 9, or 11.

Supported operating systems:

Linux versions whose standard C library is implemented with glibc.

Supported environments:

Compute Engine

Google Kubernetes Engine (GKE)

App Engine �exible environment

App Engine standard environment (requires App Engine SDK
 (/appengine/docs/standard/java/download) version 1.9.64 or later)

Outside of Google Cloud (For information on the additional con�guration requirements, see
Pro�ling applications running outside of Google Cloud (/pro�ler/docs/pro�ling-external).)

Before you use the pro�ling agent, ensure that the underlying Pro�ler API is enabled. You can check
the status of the API and enable it if necessary by using either the Cloud SDK gcloud command-line
tool or the Cloud Console:

https://cloud.google.com/profiler/docs/concepts-profiling
https://cloud.google.com/appengine/docs/standard/java/download
https://cloud.google.com/profiler/docs/profiling-external

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 2/13

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 3/13

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 4/13

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 5/13

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 6/13

To list all versions of the agent available for downloading, run the following command:

The command response is similar to the following:

To download a speci�c version of the agent, pass its URL to the download command. For example, to
download the agent built on 28 October 2019, you would use the following statement:

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 7/13

The version of the agent is logged during its initialization.

To pro�le your application, start Java as you normally would to run your program, but specify the
agent-con�guration options. You specify the path to the agent library, and you can pass options to
the library.

For the App Engine standard environment, the agent is automatically loaded and con�gured. Skip
ahead to Starting your program (#starting_your_program), for details on con�guring, and starting, your
program.

To con�gure the pro�ling agent, include the -agentpath �ag when starting your application:

In this expression, [INSTALL_DIR] is the path to the pro�ling agent, while [OPTION1], [OPTION2], and
[OPTION3] are agent con�guration options. For example, if you replace [OPTION1] with -
cprof_service=myapp in the previous expression, then you set the service name to myapp. There is no
restriction on the number of options or their ordering. Supported con�guration options are listed in
the following table:

Agent option Description

-cprof_service If your application isn't running on App Engine, then you must
use this con�guration option to set the service name. For
service name restrictions, see Service name and version
arguments (#service_name_and_version_arguments).

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 8/13

Agent option Description

-cprof_service_version When you want the ability to analyze pro�ling data using the
Pro�ler UI by the version of the service, use this option to set
the version. For version restrictions, see Service name and
version arguments (#service_name_and_version_arguments).

-cprof_project_id When you are running outside of Google Cloud, use this option
to specify your Google Cloud project ID. For more information,
see Pro�ling applications running outside of Google Cloud
 (/pro�ler/docs/pro�ling-external).

-cprof_zone_name When your application is running on Google Cloud, the
pro�ling agent determines the zone
 (/compute/docs/regions-zones/) by communicating with the
Compute Engine metadata service
 (/compute/docs/storing-retrieving-metadata). If the pro�ling
agent can't communicate with the metadata service, then you
need to use this option.

-cprof_gce_metadata_server_retry_count
-
cprof_gce_metadata_server_retry_sleep_sec

Together, these two options de�ne the retry policy that the
pro�ler agent uses when it communicates with the Compute
Engine metadata service
 (/compute/docs/storing-retrieving-metadata). to gather your
Google Cloud project ID and zone information.

Default policy is to retry up to 3 times waiting 1 second
between attempts. This policy is su�cient for most
con�gurations.

-cprof_cpu_use_per_thread_timers For the most accurate CPU time pro�les, set this option to
true. Use of this option results in increased per-thread
overhead.

Default value is false.

-cprof_force_debug_non_safepoints By default, the pro�ling agent forces JVM to generate
debugging information for all just in time (JIT) generated
code, in addition to generating debug information for all
safepoints. This results in the most accurate function and line-
level location information for CPU time and heap pro�les at
the expense of additional agent overhead. You can disable the
generation of debugging information for JIT code by setting
this option to false.

Default value is true.

https://cloud.google.com/profiler/docs/profiling-external
https://cloud.google.com/compute/docs/regions-zones/
https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://cloud.google.com/compute/docs/storing-retrieving-metadata

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 9/13

Agent option Description

-cprof_wall_num_threads_cutoff By default, wall pro�les aren't collected if the total number of
threads in the application exceeds 4096. The limit ensures
that during pro�le collection, the cost of traversing the stack
of threads is minimal. If your service normally has more than
4096 threads and if you want to collect pro�ling data at the
expense of additional overhead, use this �ag to increase limit.

Default limit is 4096 threads.

Alpha

This product or feature is in a pre-release state and might change or have limited support. For more information, see
the product launch stages (/products/#product-launch-stages).

-cprof_enable_heap_sampling To enable heap pro�ling for Java 11 and higher, set
-cprof_enable_heap_sampling to true. Heap pro�ling isn't
supported for Java 10 and lower.

Heap pro�ling is disabled by default.

When you enable heap pro�ling, the sampling interval is set to
512 KiB by default. This interval is su�cient for most
applications and incurs less than 0.5% overhead for the
application. Sampling intervals from 256 KiB (262144) to
1024 KiB (1048576) are supported. For example, to set the
sampling interval to 256 KiB, which doubles the sampling rate,
add the agent option:

Similarly, to set the sampling interval to 1024 KiB, which
halves the sampling rate, add the agent option:

https://cloud.google.com/products/#product-launch-stages

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 10/13

When you load the Pro�ler agent, you specify a service-name argument and an optional service-
version argument to con�gure it.

In the App Engine �exible environment, you do not have to specify these arguments; they are derived from the

nment.

The service name lets Pro�ler collect pro�ling data for all replicas of that service. The pro�ler service
ensures a collection rate of one pro�le per minute, on average, for each service name across each
combination service versions and zones.

For example, if you have a service with two versions running across replicas in three zones, the
pro�ler will create an average of 6 pro�les per minute for that service.

If you use different service names for your replicas, then your service will be pro�led more often than
necessary, with a correspondingly higher overhead.

When selecting a service name:

Choose a name that clearly represents the service in your application architecture. The choice
of service name is less important if you only run a single service or application. It is more
important if your application runs as a set of micro-services, for example.

Make sure to not use any process-speci�c values, like a process ID, in the service-name string.

The service-name string must match this regular expression:

^[a-z]([-a-z0-9_.]{0,253}[a-z0-9])?$

A good guideline is to use a static string like imageproc-service as the service name.

The service version is optional. If you specify the service version, Pro�ler can aggregate pro�ling
information from multiple instances and display it correctly. It can be used to mark different versions
of your services as they get deployed. The Pro�ler UI lets you �lter the data by service version; this
way, you can compare the performance of older and newer versions of the code.

The value of the service-version argument is a free-form string, but values for this argument typically
look like version numbers, for example, 1.0.0 or 2.1.2.

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 11/13

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 12/13

The pro�ling agent can report logging information for App Engine �exible environment, Compute
Engine, and GKE. The pro�ling agent supports the following logging levels:

0: Log all messages. Default logging level.

1: Log warning, error, and fatal messages.

2: Log error and fatal messages.

3: Log only fatal messages and stop the application.

To enable writing logs to standard error with the default logging level, append -logtostderr to the -
agentpath con�guration.

To set the logging level to log only error and fatal messages, append -minloglevel=2 to the -
agentpath con�guration.

1/25/2020 Profiling Java applications | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/profiling-java/ 13/13

For example, to enable logging of error and fatal messages to standard error, append -logtostderr
and ‑minloglevel=2 to the -agentpath con�guration:

To learn about the Pro�ler graph and controls, go to Using the Stackdriver Pro�ler Interface
 (/pro�ler/docs/using-pro�ler). For advanced information, go to the following:

Filtering pro�les (/pro�ler/docs/�ltering-pro�les)

Focusing the graph (/pro�ler/docs/focusing-pro�les)

Compare pro�les (/pro�ler/docs/comparing-pro�les)

https://cloud.google.com/profiler/docs/using-profiler
https://cloud.google.com/profiler/docs/filtering-profiles
https://cloud.google.com/profiler/docs/focusing-profiles
https://cloud.google.com/profiler/docs/comparing-profiles

