
1/25/2020 Quickstart | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/quickstart/ 1/4



This page shows you how to set up and use Stackdriver Pro�ler. You download a sample Go program, run it with pro�ling enabled, and
then use the Pro�ler interface to explore the captured data.

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you �nish

these steps, you can delete the project, removing all resources associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

3. Enable the Stackdriver Pro�ler API.

Enable the API (https://console.cloud.google.com/�ows/enableapi?apiid=cloudpro�ler.googleapis.com&redirect=https://console.cloud.google.com)

At the top of the Google Cloud Console page for your project, click Activate Cloud Shell:

A Cloud Shell session opens inside a new frame at the bottom of the console and displays two messages and a command-line prompt.
The �rst message lists the Google Cloud project for your Cloud Shell session. The second message tells you how to change the session
project. It can take a few seconds for the shell session to be initialized:

The sample program, main.go, is in the golang-samples repository on GitHub. To get it, retrieve the package of Go samples:

The package retrieval takes a few moments to complete.

https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://console.cloud.google.com/flows/enableapi?apiid=cloudprofiler.googleapis.com&redirect=https://console.cloud.google.com

1/25/2020 Quickstart | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/quickstart/ 2/4

Go to the directory of sample code for Pro�ler in the retrieved package:

The main.go program creates a CPU-intensive workload to provide data to the pro�ler. Start the program and leave it running:

This program is designed to load the CPU as it runs. It is con�gured to use Pro�ler, which collects pro�ling data from the program as it
runs and periodically saves it.

After you start the program, you see the profiler has started message in a few seconds. In about a minute, two more messages are
displayed:

These messages indicate that a pro�le was created and uploaded to your Cloud Storage project. The program continues to emit the last
two messages, about one time per minute, for as long as it runs.

If you receive a permission denied error message after starting the service, see Why am I getting a permission denied error?
 (/pro�ler/docs/troubleshooting#permission-denied) for possible causes.

To go to the Pro�ler interface, select Pro�ler from the Google Cloud Console dashboard:

Go to Pro�ler (https://console.cloud.google.com/pro�ler)

The interface offers an array of controls and a �ame graph for exploring the pro�ling data:

Below the time controls are options that let you choose the set of pro�le data to use. When you are pro�ling multiple application, you use
Service to select the origin of the pro�led data. Pro�le type lets you choose the kind of pro�le data to display. Zone name and Version
let you restrict display to data from Compute Engine zones (/compute/docs/regions-zones) or versions of the application. Weight lets you
select pro�les captured during peak resource consumption.

https://cloud.google.com/profiler/docs/troubleshooting#permission-denied
https://console.cloud.google.com/profiler
https://cloud.google.com/compute/docs/regions-zones

1/25/2020 Quickstart | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/quickstart/ 3/4

To re�ne how the �ame graph displays the pro�les you've selected to analyze, you add �lters. In the previous screenshot, the �lter bar

 shows one �lter. This �lter option is Metric and the �lter value is CPU time.

Below the selection controls, the call stacks of the program are displayed in a �ame graph. The �ame graph represents each function
with a frame. The width of the frame represents the proportion of resource consumption by that function. The top frame represents the
entire program. This frame always shows 100% of the resource consumption. This frame also lists how many pro�les are averaged
together in this graph.

The sample program doesn't have a complicated set of call stacks; in the preceding screenshot, you see 5 frames:

The gray frame represents the entire executable, which accounts for 100% of the resources being consumed.

The green main frame is the Go runtime.main.

The orange main frame is the main routine of the sample program.

The orange busyloop frame is a routine called from the sample's main.

The orange main.load frame is a routine called from the sample's main.

The �lter selector lets you do things like �lter out functions that match some name. For example, if there is a standard library of utility
functions, you can remove them from the graph. You can also remove call stacks originating at a certain method or simplify the graph in
other ways. The main.go application is simple, so there isn't much to �lter out.

Even for a simple application, �lters let you hide uninteresting frames so that you can more clearly view interesting frames. For example,
in the pro�ling screenshot for the sample code, the gray frame is slightly larger than the �rst main frame under it. Why? Is there
something else going on that's not immediately apparent because the main call stack consumes such an overwhelming percentage of
the resources? To view what is occurring outside of the application's main routine, add a �lter that hides the call stack of the main routine.
Only 0.227% of the resource consumption occurs outside of main:

See Using the Pro�ler interface (/pro�ler/docs/using-pro�ler) for much more information on �ltering and other ways to explore the pro�ling
data.

If the Pro�ler agent hasn't uploaded any pro�les when you start the UI, Pro�ler displays the message No data to show. The message is automatically repla

he Pro�ler interface after pro�le data is available.

Need more general information?

https://cloud.google.com/profiler/docs/using-profiler

1/25/2020 Quickstart | Stackdriver Profiler | Google Cloud

https://cloud.google.com/profiler/docs/quickstart/ 4/4

For an overview of Stackdriver Pro�ler, see About Stackdriver Pro�ler (/pro�ler/docs/about-pro�ler).

For an introduction to pro�ling, see Pro�ling concepts (/pro�ler/docs/concepts-pro�ling).

For detailed information on Pro�ler features, see Using the Stackdriver Pro�ler interface (/pro�ler/docs/using-pro�ler).

Ready to pro�le your own application? Choose your language:

Pro�ling Go applications (/pro�ler/docs/pro�ling-go)

Pro�ling Java applications (/pro�ler/docs/pro�ling-java)

Pro�ling Node.js applications (/pro�ler/docs/pro�ling-nodejs)

Pro�ling Python applications (/pro�ler/docs/pro�ling-python)

https://cloud.google.com/profiler/docs/about-profiler
https://cloud.google.com/profiler/docs/concepts-profiling
https://cloud.google.com/profiler/docs/using-profiler
https://cloud.google.com/profiler/docs/profiling-go
https://cloud.google.com/profiler/docs/profiling-java
https://cloud.google.com/profiler/docs/profiling-nodejs
https://cloud.google.com/profiler/docs/profiling-python

