
1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 1/13

Pub/Sub (https://cloud.google.com/pubsub/docs) is an asynchronous messaging service designed
to be highly reliable and scalable. The service is built on a core Google infrastructure
component that many Google products have relied upon for over a decade. Google products
including Ads, Search and Gmail use this infrastructure to send over 500 million messages per
second, totaling over 1TB/s of data. This article describes the salient design features that
enables Pub/Sub to provide this type of scale reliably.

Pub/Sub is a publish/subscribe (Pub/Sub) service: a messaging service where the senders of
messages are decoupled from the receivers of messages. There are several key concepts in a
Pub/Sub service:

Message: the data that moves through the service.

Topic: a named entity that represents a feed of messages.

Subscription: a named entity that represents an interest in receiving messages on a
particular topic.

Publisher (also called a producer): creates messages and sends (publishes) them to the
messaging service on a speci�ed topic.

Subscriber (also called a consumer): receives messages on a speci�ed subscription.

The basic �ow of messages through Pub/Sub can be summarized in the following diagram:

https://cloud.google.com/pubsub/docs


1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 2/13

In this scenario, there are two publishers publishing messages on a single topic. There are two
subscriptions to the topic. The �rst subscription has two subscribers, meaning messages will
be load-balanced across them, with each subscriber receiving a subset of the messages. The
second subscription has one subscriber that will receive all of the messages. The bold letters
represent messages. Message A comes from Publisher 1 and is sent to Subscriber 2 via
Subscription 1, and to Subscriber 3 via Subscription 2. Message B comes from Publisher 2 and
is sent to Subscriber 1 via Subscription 1 and to Subscriber 3 via Subscription 2.

A messaging service like Pub/Sub can be judged on its performance in three aspects:
scalability, availability, and latency. These three factors are often at odds with each other,
requiring compromises on one to improve the other two.

The terms "scalability," “availability,” and “latency” can refer to different properties of a system,
so the following sections describe how they are de�ned in Pub/Sub.

A scalable service should be able to handle increases in load without noticeable degradation of
latency or availability. "Load" can refer to various dimensions of usage in Pub/Sub:

Number of topics

Number of publishers

Number of subscriptions



1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 3/13

Number of subscribers

Number of messages

Size of messages

Rate of messages (throughput) published or consumed

Size of backlog on any given subscription

In a distributed system, the types and severity of problems can vary greatly. A system’s
availability is measured on how well it deals with different types of issues, gracefully failing
over in a way that is unnoticeable to end users. Failures can occur in hardware (e.g., disk drives
not working (https://status.cloud.google.com/incident/compute/15056#5719570367119360) or
network connectivity problems
 (http://www.slate.com/blogs/future_tense/2014/08/15/shark_attacks_threaten_google_s_undersea_intern
et_cables_video.html)

), in software, and due to load. Failure due to load could happen when a sudden increase in
tra�c in the service (or in other software components running on the same hardware or in
software dependencies) results in resource scarcity. Availability can also degrade due to human
error, where one makes mistakes in building or deploying software or con�gurations.

Latency is a time-based measure of the performance of a system. A service generally wants to
minimize latency wherever possible. For Pub/Sub, the two most important latency metrics are:

1. The amount of time it takes to acknowledge a published message.

2. The amount of time it takes to deliver a published message to a subscriber.

This section explains the design of Pub/Sub to show how the service attains its scalability and
low latency while retaining availability. The system is designed to be horizontally scalable,
where an increase in the number of topics, subscriptions, or messages can be handled by
increasing the number of instances of running servers.

https://status.cloud.google.com/incident/compute/15056#5719570367119360
http://www.slate.com/blogs/future_tense/2014/08/15/shark_attacks_threaten_google_s_undersea_internet_cables_video.html


1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 4/13

Pub/Sub servers run in most GCP regions (/about/locations/) around the world. This allows the
service to offer fast, global data access, while giving users control over where messages are
stored. Cloud Pub/Sub offers global data access in that publisher and subscriber clients are not
aware of the location of the servers to which they connect or how those services route the data.

Pub/Sub’s load balancing mechanisms direct publisher tra�c to the nearest GCP data center
where data storage is allowed, as de�ned in the Resource Location Restriction
 (/pubsub/docs/resource-location-restriction) section of the IAM & admin console
 (https://console.cloud.google.com/iam-admin/orgpolicies/list?project=_&). This means that publishers
in multiple regions may publish messages to a single topic with low latency. Any individual
message is stored in a single region. However, a topic may have messages stored in many
regions. When a subscriber client requests messages published to this topic, it connects to the
nearest server which aggregates data from all messages published to the topic for delivery to
the client.

Pub/Sub is divided into two primary parts: the data plane, which handles moving messages
between publishers and subscribers, and the control plane, which handles the assignment of
publishers and subscribers to servers on the data plane. The servers in the data plane are called
forwarders, and the servers in the control plane are called routers. When publishers and
subscribers are connected to their assigned forwarders, they do not need any information from
the routers (as long as those forwarders remain accessible). Therefore, it is possible to upgrade
the control plane of Pub/Sub without affecting any clients that are already connected and
sending or receiving messages.

The Pub/Sub control plane distributes clients to forwarders in a way that provides scalability,
availability, and low latency for all clients. Any forwarder is capable of serving clients for any
topic or subscription. When a client connects to Pub/Sub, the router decides the data centers
the client should connect to based on shortest network distance, a measure of the latency on
the connection between two points. Within any given data center the router tries to distribute
overall load across the set of available forwarders. The router must balance two different goals
when performing this assignment: (a) uniformity of load (i.e., ideally every forwarder is equally
loaded); and (b) stability of assignments (i.e., ideally a change in load or a change in the set of
available forwarders changes the smallest number of existing assignments). The router uses a
variant of consistent hashing
 (https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html) developed by
Google Research (https://research.google.com/) to achieve a tunable balance between consistency

https://cloud.google.com/about/locations/
https://cloud.google.com/pubsub/docs/resource-location-restriction
https://console.cloud.google.com/iam-admin/orgpolicies/list?project=_&
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.google.com/


1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 5/13

and uniformity. The router provides the client with an ordered list of forwarders it can consider
connecting to. This ordered list may change based on forwarder availability and the shape of
the load from the client.

A client takes this list of forwarders and connects to one or more of them. The client prefers
connecting to the forwarders most recommended by the router, but also takes into
consideration any failures that have occurred, e.g., it may decide to try forwarders in a different
data center if several attempts to the nearest ones have failed. In order to abstract Pub/Sub
clients away from these implementation details, there is a service proxy between the clients and
forwarders that performs this connection optimization on behalf of clients.

The data plane receives messages from publishers and sends them to clients. Perhaps the best
way of understanding Pub/Sub’s data plane is by looking at the life of a message, from the
moment it is received by the service to the moment it is no longer present in the service. Let us
trace the steps of processing a message. For the purposes of this section, we assume that the
topic on which the message is published has at least one subscription attached to it. In general,
a message goes through these steps:

1. A publisher sends a message.

2. The message is written to storage.

3. Pub/Sub sends an acknowledgement to the publisher that it has received the message
and guarantees its delivery to all attached subscriptions.

4. At the same time as writing the message to storage, Pub/Sub delivers it to subscribers.

5. Subscribers send an acknowledgement to Pub/Sub that they have processed the
message.

6. Once at least one subscriber for each subscription has acknowledged the message,
Pub/Sub deletes the message from storage.

First, a publisher sends a message on a topic to Pub/Sub. It is encrypted by the proxy layer and
sent to a publishing forwarder, a forwarder to which the publisher is connected. In order to
ensure delivery, the message is immediately written to storage. The forwarder initially writes the
message to N clusters (where N is an odd number) and considers the message persisted when
it has been written to at least ⌈N/2⌉ clusters. Once a message is persisted, the publishing
forwarder acknowledges receipt of the message back to the publisher, at which point Pub/Sub



1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 6/13

guarantees that the message will be delivered to all attached subscriptions. A background
process regularly writes any messages that are not in all N clusters to the clusters missing the
messages.

Within each cluster, the message is written to M independent disks (where M is an odd number),
requiring the data to be on ⌈M/2⌉ disks before it is considered persisted in that cluster. In total,
any message published will be written to at least ⌈M/2⌉ independent disks in ⌈N/2⌉ clusters
before it is considered persisted and will eventually be replicated to N*M disks.

The publishing forwarder has a list of all subscriptions that are attached to a topic. It is
responsible for persisting both the published messages and the metadata describing which
messages have been acknowledged by each subscription. The set of messages received and
stored by a publishing forwarder for a particular topic, along with this tracking of acknowledged
messages, is called a "publish message source." Depending on the throughput requirements for
the topic, a single publisher may send its messages to multiple publishing forwarders and store
messages in multiple publish message sources. Different publishers for the same topic may
also send messages to different publishing forwarders. Each message is sent to only a single
publishing forwarder. Pub/Sub dynamically tunes the number of publishing forwarders that
receive messages for a particular topic as the throughput changes.

Subscribers receive messages by connecting to subscribing forwarders, forwarders through
which messages �ow to subscribers from publishers. “Connecting” in the case of a pull
subscriber means issuing a pull request. “Connecting” in the case of a push subscriber means
having the push endpoint registered with Pub/Sub. Once a subscription is created, it is
guaranteed that any messages published after that point will be delivered to that subscription,
what we call a sync-point guarantee.

Each subscribing forwarder needs to request messages from publishing forwarders that have
publish message sources for the topic. Like publishers, subscribers may connect to more than
one subscribing forwarder in order to receive messages. That way, not every subscribing
forwarder needs to be aware of or receive messages from every publish message source for a
topic--an important property for Pub/Sub to be able to scale horizontally. Based on the
throughput of messages being delivered to subscribers, Pub/Sub dynamically tunes the
number of subscribing forwarders through which subscribers receive messages for a particular
topic as the throughput changes.

A subscribing forwarder makes requests to one or more publishing forwarders that have
publish message sources for a topic to ask for the messages it needs. The publishing forwarder



1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 7/13

sends the unacknowledged messages to the subscribing forwarder, which then relays the
messages to a subscriber.

Once a subscriber processes a message, it sends an acknowledgement back to the subscribing
forwarder. The subscribing forwarder relays this acknowledgement to the publishing forwarder,
which stores the acknowledgement in the publish message source. Once all subscriptions on a
topic have acknowledged a message, the message is asynchronously deleted from the publish
message source and from storage.

Different messages for a single topic and subscription can �ow through many publishers,
subscribers, publishing forwarders, and subscribing forwarders. Publishers can publish to
multiple forwarders simultaneously and subscribers may connect to multiple subscribing
forwarders to receive messages. Therefore, the �ow of messages through connections among
publishers, subscribers, and forwarders can be complex. The following diagram shows how
messages could �ow for a single topic and subscription, where different colors indicate the
different paths messages may take from publishers to subscribers:

Ensuring that a distributed system like Pub/Sub can stay up and running and effectively serve
all customers requires a great deal of visibility into and control of the system. Maintaining the
service is the responsibility of our Site Reliability Engineers
 (https://books.google.com/books?id=81UrjwEACAAJ) (SREs). For Pub/Sub, these engineers are
based in multiple locations around the world in order to provide 24/7 coverage.

https://books.google.com/books?id=81UrjwEACAAJ


1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 8/13

The �rst part of maintaining a system like Pub/Sub is to have the ability to test software before
it is used by customers. In order to make that possible, there are three Pub/Sub environments:
test, staging, and production. Test and staging do not contain any customer tra�c; they contain
only our continuously-running tests and monitoring that help to �nd any issues with releases.
These environments receive new releases of the software before production. The difference
between test and staging is that the latter is an exact replica of what is in (or will very shortly be
in) the production environment, including software version and command-line �ags. The former
may have features enabled that developers are currently working on and plan for release
sometime in the future.

The procedure for rolling out and testing Pub/Sub is designed to minimize potential impact.
Let’s look at the typical steps for the rollout of a new version of Pub/Sub:

1. Ensure all unit tests and integration tests pass.

2. Build a new version of all the servers.

3. Deploy the new servers to the test and staging environments.

4. Run the servers on the test and staging environment for several days.

5. If there are no known issues, release servers to canary, a subset of the production
environment that has a small amount of customer tra�c.

6. If no problems are detected in canary, progressively roll the servers out to more of
production over several days until they are released everywhere.

Since Pub/Sub is designed to be resilient to failures, e.g., through the separation of the control
plane and data plane, rollouts of new versions of servers are seamless to customers and
should have no impact on the performance they see.

The key to keeping Pub/Sub up and running is to automatically detect and mitigate issues
before they become visible to customers. Accomplishing this requires extensive monitoring of
the system. The SREs maintain a set of service level indicators (SLIs), well-de�ned metrics that



1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 9/13

describe the behavior of the system. Metrics may include "amount of time it takes for a
CreateSubscription request to complete" or “rate of errors generated by Publish requests.” These
metrics are measured in a variety of ways. Some of them are strictly internal to our forwarders
and routers. For example, they measure how long it takes to write messages to disk. In total,
there are ten SLIs and hundreds of additional metrics used to monitor the health of Pub/Sub.

All of these measures help to de�ne internal service level objectives (SLOs), speci�c targets for
the SLIs. For example, "a CreateSubscription request should take no more than �ve seconds to
complete." SREs are alerted for SLO violations, and must attend to alerts within �ve minutes.

A service level agreement (SLA) lists the SLOs that de�ne our performance guarantees to our
customers and the consequences if we do not meet them. You can read Pub/Sub’s SLA
 (https://cloud.google.com/pubsub/sla).

We maintain a set of tasks that act as clients and predictably publish and subscribe called
probers. Probers exist for both the data plane and the control plane. Each of our ten types of
probers performs speci�c actions just as a customer would and measures how long the
operations take. For instance, we have a prober that creates a new subscription, publishes a
message, and sees how long it took to both create the subscription and receive the message. If
the probers determine that any of thirty measured metrics are not what is expected, SREs are
alerted.

The metrics for our servers and probers are summarized on several internal dashboards, the
�rst place SREs look whenever diagnosing potential issues. These pages provide quick access
to stats and graphs of the entire service, as pictured below. They can also be broken down by
topic, data center, or individual task.

https://cloud.google.com/pubsub/sla


1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 10/13

The metrics that are most interesting to users of the service are exposed via Google Cloud
Monitoring (/monitoring/). In fact, even our own probers have charts available like this:

https://cloud.google.com/monitoring/


1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 11/13

We have at our disposal several controls to help tune the performance of Pub/Sub. Some of
these controls are designed to help with data center or machine outages. We can place routing
constraints on some or all topics, which are rules specifying sets of clients that can and/or
cannot connect to sets of forwarders. We use routing constraints to drain tra�c away from
individual forwarder tasks or whole data centers that are not functioning as expected.

Another tunable feature we have is �ow control. This feature allows us to maximize throughput
while preventing overload in the service. Flow control is a form of tra�c shaping whereby
sudden unexpected spikes in load can be smoothed out over time for greater service stability.
Flow control operates system-wide or on a per-topic or per-subscriber basis to limit the number
of messages or the number of bytes that are transferred or are outstanding. In this case
"outstanding" means delivered to the client, but not yet acknowledged. Both �ow control and
routing constraints allow us to optimize the Pub/Sub’s performance without customers having
to worry about these low-level details.

The advantages in scalability, availability, and latency of a service like Pub/Sub de�ne the
value proposition for customers who are considering a move to managed cloud services. Any
asynchronous messaging service has to be built from the ground up with these features in
mind. With over a decade of experience in reliably delivering lots of messages quickly, the
Pub/Sub team has built and maintains a service that can keep up with the demands of the
most fundamental products at Google. Now that same service is available to all external
customers who want to send their messages around the world without having to worry whether
or not their messaging system can handle 2x, 10x, or 100x their current load.

Term Description

cluster A logical grouping of machines that generally share the same failure domain (e.g., shared
local network and shared power).

control plane The layer of Pub/Sub that handles the assignment of publishers and subscribers to servers
on the data plane.



1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 12/13

data plane The layer of Pub/Sub that handles moving messages between publishers and subscribers.

forwarder A server in the data plane.

global data
access

Pub/Sub publisher and subscriber clients are unaware of the location of the data. All
routing and storage is done by the service itself, in accordance with Location Restriction
policy.

horizontally
scalable

The ability of a service to seamlessly handle more load by increasing the number of
instances of components of the service.

message The data that moves through Pub/Sub.

network distance A measure of the latency on the connection between two points.

prober A task that acts as a client and predictably performs one or more actions on the Pub/Sub
servers.

publish message
source

A set of messages received and stored by a publishing forwarder and the set of IDs of
messages acknowledged by all attached subscriptions.

publish/subscribe
(Pub/Sub) service

A messaging service where the senders of messages are decoupled from the receivers of
messages

publisher A client of Pub/Sub that creates messages and sends (publishes) them on a speci�ed
topic.

router A server in the control plane.

routing
constraints

A list of rules indicating which forwarders should or should not be sent by routers to clients
as possible endpoints to connect to.

service level
agreement (SLA)

A list of SLOs that de�ne a system’s performance guarantees to customers and outlines
the consequences if they are not met.

service level
indicator (SLI)

A well-de�ned metric that describes the behavior of the system.

service level
objective (SLO)

A speci�c target for a service level indicator.

subscriber A client of Pub/Sub that receives messages on a speci�ed subscription.

subscription A named entity that represents an interest in receiving all messages on a particular topic.

sync-point
guarantee

The time at which a subscriber is created, where all subsequent messages published will be
delivered to that subscriber.

topic A named entity that represents a feed of messages.



1/25/2020 Pub/Sub: A Google-Scale Messaging Service  |  Cloud Pub/Sub

https://cloud.google.com/pubsub/architecture/ 13/13


