
1/25/2020 Monitoring overview | Cloud Pub/Sub Documentation | Google Cloud

https://cloud.google.com/pubsub/docs/monitoring 1/5

The Pub/Sub API exports metrics via Stackdriver (/monitoring/). Stackdriver allows you to create
monitoring dashboards (/monitoring/charts/) and alerts (/monitoring/alerts/) or access the metrics
programmatically.

Go to Stackdriver (https://app.google.stackdriver.com/) in Google Cloud Console to view
Stackdriver monitoring dashboards or to de�ne Stackdriver alerts. You can also use the
Stackdriver monitoring API (/monitoring/api/v3) to query and view metrics for subscriptions and
topics.

To see the usage metrics that Pub/Sub reports to Stackdriver, view the Metrics List
 (/monitoring/api/metrics_gcp#gcp-pubsub) in the Stackdriver documentation.

To see the details for the pubsub_topic (/monitoring/api/resources#tag_pubsub_topic)

pubsub_subscription (/monitoring/api/resources#tag_pubsub_subscription) or
pubsub_snapshot (/monitoring/api/resources#tag_pubsub_snapshot) monitored resource types,
view Monitored Resource Types (/monitoring/api/resources) in the Stackdriver
documentation.

You can use the APIs and services quotas dashboard
 (https://console.cloud.google.com/apis/api/pubsub.googleapis.com/quotas?project=_) to monitor the
current utilization for a given topic or subscription.

Those metrics are:

pubsub.googleapis.com/topic/byte_cost

https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/charts/
https://cloud.google.com/monitoring/alerts/
https://app.google.stackdriver.com/
https://cloud.google.com/monitoring/api/v3
https://cloud.google.com/monitoring/api/metrics_gcp#gcp-pubsub
https://cloud.google.com/monitoring/api/resources#tag_pubsub_topic
https://cloud.google.com/monitoring/api/resources#tag_pubsub_subscription
https://cloud.google.com/monitoring/api/resources#tag_pubsub_snapshot
https://cloud.google.com/monitoring/api/resources
https://console.cloud.google.com/apis/api/pubsub.googleapis.com/quotas?project=_

1/25/2020 Monitoring overview | Cloud Pub/Sub Documentation | Google Cloud

https://cloud.google.com/pubsub/docs/monitoring 2/5

pubsub.googleapis.com/subscription/byte_cost

Note that these metrics are in bytes, whereas quota is measured in kilobytes.

To ensure that your subscribers are keeping up with the �ow of messages, create a dashboard
that shows the following metrics, aggregated by resource, for all your subscriptions.:

subscription/num_undelivered_messages

subscription/oldest_unacked_message_age

Create alerts that will �re when these values are unusually large in the context of your system.
For instance, the absolute number of undelivered messages is not necessarily meaningful. A
backlog of a million messages might be acceptable for a million message-per-second
subscription, but unacceptable for a one message-per-second subscription.

Symptoms Problem Solutions

Both the oldest_unacked_message_age and num_undelivered_messages are
growing in tandem.

Subscribers
not keeping
up with
message
volume

Add more
threads or

Add more
machines
containers

Look for s
bugs in yo
that preve
successfu
acknowled
messages
processing
timely fash
Monitoring
deadline e
 (#monito

If there is a steady, small backlog size combined with a steadily growing Stuck Examine your

1/25/2020 Monitoring overview | Cloud Pub/Sub Documentation | Google Cloud

https://cloud.google.com/pubsub/docs/monitoring 3/5

In order to reduce end-to-end latency of message delivery, Pub/Sub allows subscriber clients a
limited amount of time to acknowledge a given message (known as the "ack deadline") before
re-delivering the message. If your subscribers take too long to acknowledge messages, the
messages will be re-delivered, resulting in the subscribers seeing duplicate messages. This can
happen for a number of reasons:

Your subscribers are under-provisioned (you need more threads or machines).

Each message takes longer to process than the message acknowledgement deadline.
Google Cloud Client Libraries generally extend the deadline for individual messages up to
a con�gurable maximum. However, a maximum extension deadline is also in effect for
the libraries.

Some messages consistently crash the client.

It can be useful to measure the rate at which subscribers miss the ack deadline. The speci�c
metric depends on the subscription type:

oldest_unacked_message_age, there may be a small number of messages that
cannot be processed.

messages logs to under
whether som
are causing y
crash. It's unl
possible —tha
offending me
stuck on Pub
than in your c
a
 (/pubsub/do
support case
are con�dent
successfully p
each messag

The oldest_unacked_message_age exceeds the subscription's message retention
duration
 (/pubsub/docs/admin#retaining_unacknowledged_and_acknowledged_messages)
.

Permanent
data loss

Set up an aler
well in advanc
subscription's
retention dura
lapsing.

https://cloud.google.com/pubsub/docs/support
https://cloud.google.com/pubsub/docs/admin#retaining_unacknowledged_and_acknowledged_messages

1/25/2020 Monitoring overview | Cloud Pub/Sub Documentation | Google Cloud

https://cloud.google.com/pubsub/docs/monitoring 4/5

Pull: subscription/pull_ack_message_operation_count �ltered by response_code !=
"success"

Streaming Pull: subscription/streaming_pull_ack_message_operation_count �ltered by
response_code != "success"

Push: subscription/push_request_count �ltered by response_code != "success"

Excessive ack deadline expiration rates can result in costly ine�ciencies in your system. You
pay for every redelivery and for attempting to process each message repeatedly. Conversely, a
small expiration rate (for example, 0.1-1%) might be healthy.

For push subscriptions, you should also monitor these metrics:

subscription/push_request_count

Group the metric by response_code and subcription_id. Since Pub/Sub push
subscriptions use response codes as implicit message acknowledgements, it is important
to monitor push request response codes. Because push subscriptions exponentially back
off (/pubsub/docs/push#quotas_limits_and_delivery_rate) when they encounter timeouts or
errors, your backlog can grow quickly based on how your endpoint responds.

Consider setting an alert for high error rates (create a metric �ltered by response class),
since those rates lead to slower delivery and a growing backlog. However, push request
counts are likely to be more useful as a tool for investigating growing backlog size and
age.

subscription/num_outstanding_messages

Pub/Sub generally limits the number of outstanding messages (/pubsub/quotas). You
should aim for fewer than 1000 outstanding messages in most situations. As a rule, the
service adjusts the limit based on the overall throughput of the subscription in increments
of 1000, once the throughput achieves a rate on the order of ten thousand messages per
second. No speci�c guarantees are made beyond the maximum value, so 1000 is a good
guide.

subscription/push_request_latencies

This metric helps you understand your push endpoint's response latency distribution.
Because of the limit on the number of outstanding messages, endpoint latency affects

https://cloud.google.com/pubsub/docs/push#quotas_limits_and_delivery_rate
https://cloud.google.com/pubsub/quotas

1/25/2020 Monitoring overview | Cloud Pub/Sub Documentation | Google Cloud

https://cloud.google.com/pubsub/docs/monitoring 5/5

subscription throughput. If it takes 100 milliseconds to process each message, your
throughput limit is likely to be 10 messages per second.

The primary goal of a publisher is to persist message data quickly. Monitor this performance
using topic/send_request_count, grouped by response_code. This metric gives you an
indication of whether Pub/Sub is healthy and accepting requests.

A background rate of retryable errors (signi�cantly lower than 1%) should not be a cause for
concern, since most Google Cloud Client Libraries retry message failures. You should
investigate error rates that are greater than 1%. Because non-retryable codes are handled by
your application (rather than the client library), you should examine response codes. If your
publisher application does not have a good way of signaling an unhealthy state, consider
setting an alert on the send_request_count metric.

It is equally important to track failed publish requests in your publish client. While client
libraries generally retry failed requests, they do not guarantee publication. Refer to Publishing
messages (/pubsub/docs/publisher#retry) for ways to detect permanent publish failures when
using Google Cloud Client Libraries. At a minimum, your publisher application should log
permanent publish errors. If you log those errors to Stackdriver Logging, you can set up a logs-
based metric (/logging/docs/logs-based-metrics/) with an alert.

https://cloud.google.com/pubsub/docs/publisher#retry
https://cloud.google.com/logging/docs/logs-based-metrics/

