1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

This document provides information about publishing messages.

* To learn about creating, deleting, and administering topics and subscriptions, see
Managing_Topics and Subscriptions (/pubsub/docs/admin).

» To restrict the locations in which message data is stored on a per-topic basis, see
Restricting Pub/Sub resource locations (/pubsub/docs/resource-location-restriction).

* To learn more about receiving messages, see the Subscriber Guide
(/pubsub/docs/subscriber).

A publisher application creates and sends messages to a topic. Pub/Sub offers at-least-once
message delivery (/pubsub/docs/subscriber) and best-effort ordering to existing subscribers, as
explained in the Subscriber Overview (/pubsub/docs/subscriber).

The general flow for a publisher application is:

1. Create a message containing your data.

2. Send a request to the Pub/Sub Server to publish the message to the desired topic.

See the Client Libraries Getting Started Guide (/pubsub/docs/reference/libraries) to set up your
environment in the programming language of your choice.

When using JSON over REST, message data must be base64-encoded. The entire request
including one or more messages must be smaller than 10MB, after decoding. Note that the
message payload must not be empty; it must contain either a non-empty data field, or at least
one attribute.

Client libraries, depending on your choice of programming language, can publish messages
synchronously or asynchronously. Asynchronous publishing allows for batching and higher

https://cloud.google.com/pubsub/docs/publisher/ 1/26

https://cloud.google.com/pubsub/docs/admin
https://cloud.google.com/pubsub/docs/resource-location-restriction
https://cloud.google.com/pubsub/docs/subscriber
https://cloud.google.com/pubsub/docs/subscriber
https://cloud.google.com/pubsub/docs/subscriber
https://cloud.google.com/pubsub/docs/reference/libraries

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

throughput in your application.

All client libraries support publishing messages asynchronously. See the API Reference
documentation (/pubsub/docs/reference/libraries#additional_resources) for your chosen
programming language to see if its client library also supports publishing messages
synchronously, if that is your preferred option.

A server-generated ID (unique within the topic) is returned on the successful publication of a
message.

https://cloud.google.com/pubsub/docs/publisher/ 2/26

https://cloud.google.com/pubsub/docs/reference/libraries#additional_resources

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

You can embed custom attributes as metadata in Pub/Sub messages. Attributes can be text
strings or byte strings. The message schema can be represented as follows:

The PubsubMessage JSON schema is published as part of the REST
(/pubsub/docs/reference/rest/v1/PubsubMessage) and RPC
(/pubsub/docs/reference/rpc/google.pubsub.v1#google.pubsub.v1.PubsubMessage) documentation.

https://cloud.google.com/pubsub/docs/publisher/ 9/26

https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage
https://cloud.google.com/pubsub/docs/reference/rpc/google.pubsub.v1#google.pubsub.v1.PubsubMessage

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

The Pub/Sub client libraries batch multiple messages into a single call to the service. Larger
batch sizes increase message throughput (rate of messages sent per CPU). The cost of
batching is latency for individual messages, which are queued in memory until their
corresponding batch is filled and ready to be sent over the network. To minimize latency,
batching should be turned off. This is particularly important for applications that publish a
single message as part of a request-response sequence. A common example of this pattern is
encountered in serverless, event-driven applications using Cloud Functions or App Engine.

Messages can be batched based on request size (in bytes), number of messages, and time. You
can override the default settings as shown in this sample:

https://cloud.google.com/pubsub/docs/publisher/ 13/26

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

Publishing failures are automatically retried, except for errors that do not warrant retries. This
sample code demonstrates creating a publisher with custom retry settings (note that not all
client libraries support custom retry settings; see the APl Reference documentation
(/pubsub/docs/reference/libraries#additional_resources) for your chosen language):

https://cloud.google.com/pubsub/docs/publisher/ 19/26

https://cloud.google.com/pubsub/docs/reference/libraries#additional_resources

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

Retry settings control both the total number of retries and exponential backoff (how long the
client waits between subsequent retries). The initial RPC timeout is the time the client waits for
the initial RPC to succeed before retrying. The total timeout is the time the client waits before it
stops retrying. To retry publish requests, the initial RPC timeout should be shorter than the total
timeout.

Once the first RPC fails or times out, the exponential backoff logic determines when the
subsequent retries occur. On each retry, the RPC timeout increases by this multiplier, up to the
maximum RPC timeout. In addition, the retry delay settings determine how long the client waits
between getting an error or timeout and initiating the next request.

Support for concurrency depends on your programming language. Refer to the API Reference
documentation (/pubsub/docs/reference/libraries#additional_resources) for more information.

The following sample illustrates how to control concurrency in a publisher:

https://cloud.google.com/pubsub/docs/publisher/ 23/26

https://cloud.google.com/pubsub/docs/reference/libraries#additional_resources

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/

1/25/2020 Publishing messages | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/publisher/ 26/26

