
1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 1/40

Pub/Sub supports both push and pull message delivery. For an overview and comparison of
pull and push subscriptions, see the Subscriber Overview (/pubsub/docs/subscriber). This
document describes pull delivery. For a discussion of push delivery, see the Push Subscriber
Guide (/pubsub/docs/push).

Using asynchronous pulling provides higher throughput in your application, by not requiring
your application to block for new messages. Messages can be received in your application
using a long running message listener, and acknowledged one message at a time, as shown in
the example below. Java, Python, .NET, Go, and Ruby clients use the streamingPull service API
to implement the asynchronous client API e�ciently.

Not all client libraries support asynchronously pulling messages. To learn about synchronously
pulling messages, see Synchronous Pull (/pubsub/docs/pull#synchronous_pull).

For more information, see the API Reference documentation
 (/pubsub/docs/reference/libraries#additional_resources) in your programming language.

https://cloud.google.com/pubsub/docs/subscriber
https://cloud.google.com/pubsub/docs/push
https://cloud.google.com/pubsub/docs/pull#synchronous_pull
https://cloud.google.com/pubsub/docs/reference/libraries#additional_resources


1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 2/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 3/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 4/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 5/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 6/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 7/40

This sample shows how to pull messages asynchronously and retrieve the custom attributes
from metadata:



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 8/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 9/40

This sample shows how to handle errors that arise when subscribing to messages:



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 10/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 11/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 12/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 13/40

Your subscriber client might process and acknowledge messages more slowly than Pub/Sub
sends them to the client. In this case:



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 14/40

It's possible that one client could have a backlog of messages because it doesn't have the
capacity to process the volume of incoming messages, but another client on the network
does have that capacity. The second client could reduce the subscription's backlog, but it
doesn't get the chance to do so because the �rst client maintains a lease on the
messages that it receives. This reduces the overall rate of processing because messages
get stuck on the �rst client.

Because the client library repeatedly extends the acknowledgement deadline for
backlogged messages, those messages continue to consume memory, CPU, and
bandwidth resources. As such, the subscriber client might run out of resources (such as
memory). This can adversely impact the throughput and latency of processing messages.

To mitigate the issues above, use the �ow control features of the subscriber to control the rate
at which the subscriber receives messages. These �ow control features are illustrated in the
following samples:



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 15/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 16/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 17/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 18/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 19/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 20/40

More generally, the need for �ow control indicates that messages are being published at a
higher rate than they are being consumed. If this is a persistent state, rather than a transient
spike in message volume, consider increasing the number of subscriber client instances.

Support for concurrency depends on your programming language. For language
implementations that support parallel threads, such as Java and Go, the client libraries make a
default choice for the number of threads. This choice may not be optimal for your application.
For example, if you �nd that your subscriber application is not keeping up with the incoming
message volume but is not CPU-bound, you should increase the thread count. For CPU-intensive
message processing operations, reducing the number of threads might be appropriate.

The following sample illustrates how to control concurrency in a subscriber:



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 21/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 22/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 23/40

Support for concurrency depends on your programming language. Refer to the API Reference
documentation (/pubsub/docs/reference/libraries#additional_resources) for more information.

The Pub/Sub service has two APIs for retrieving messages:

Pull (/pubsub/docs/reference/rpc/google.pubsub.v1#pullrequest)

StreamingPull (/pubsub/docs/reference/rpc/google.pubsub.v1#streamingpullrequest)

Where possible, the Cloud Client libraries use StreamingPull
 (https://grpc.io/docs/guides/concepts.html) for maximum throughput and lowest latency.

Although you may never use the StreamingPull API directly, it is important to understand some
crucial properties of StreamingPull and how it differs from the more traditional pull method.

https://cloud.google.com/pubsub/docs/reference/libraries#additional_resources
https://cloud.google.com/pubsub/docs/reference/rpc/google.pubsub.v1#pullrequest
https://cloud.google.com/pubsub/docs/reference/rpc/google.pubsub.v1#streamingpullrequest
https://grpc.io/docs/guides/concepts.html


1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 24/40

The Pull method relies on a request/response model:

1. The application sends a request for messages.

2. The server replies with zero or more messages and closes the connection.

The StreamingPull service API relies on a persistent bidirectional connection to receive multiple
messages as they become available, send acknowledgements, and modify acknowledgement
deadlines:

1. The client sends a request to the service to establish a connection.

2. The client uses that connection to exchange message data.

3. The request (that is, the bidirectional connection) is terminated either by the client or the
server.

StreamingPull streams are always terminated with an error code. Note that unlike in regular
RPCs, the error here is simply an indication that a stream has been broken, not that requests are
failing. Therefore, while the StreamingPull API may have a seemingly surprising 100% error rate,
this is by design.

Because StreamingPull streams always terminate with an error, it isn't helpful to examine
StreamingPull request metrics while diagnosing errors. Rather, focus on StreamingPull
message operation metrics. Look for these errors:

FAILED_PRECONDITION errors can occur in these cases:

Pub/Sub attempts to decrypt a message with a disabled Cloud KMS key.

The stream shuts down due to a suspended subscription. Subscriptions can be
temporarily suspended if there are messages in the subscription backlog that are
protected by a disabled Cloud KMS key.

UNAVAILABLE errors



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 25/40

The gRPC StreamingPull stack is optimized for high throughput and therefore buffers
messages. This can have some consequences if you are attempting to process large backlogs
of small messages (rather than a steady stream of new messages). Under these conditions,
you may see messages delivered multiple times and they may not be load balanced effectively
across clients.

The buffer between the Pub/Sub service and the client library user space is roughly 10MB. To
understand the impact of this buffer on client library behavior, consider this example:

There is a backlog of 10000 1KB messages on a subscription.

Each message takes 1 second to process sequentially, by a single-threaded client
instance.

The �rst client instance to establish a StreamingPull connection to the service for that
subscription will get a buffer of the entire 10K messages.

It takes 10000 seconds (almost 3 hours) to process the buffer.

In that time, some of the messages exceed their acknowledgement deadline and are re-
sent to the same client, resulting in duplicates.

When multiple client instances are running, the messages stuck in the buffer will not be
available to any instances other than the �rst.

This situation will not occur if the messages are arriving at a steady rate, rather as a single
large batch. The service never has the entire 10MB of messages at a time and so is able to
effectively load balance messages across multiple subscribers.

To address this situation, either use a push subscription or a pull API, currently available in
some of the Cloud Client Libraries (see the Synchronous Pull section) and all API Client
libraries. To learn more, see the Client Libraries documentation (/pubsub/docs/reference/libraries).

There are cases when the asynchronous pull is not a perfect �t for your application. For
example, the application logic might rely on a polling pattern to retrieve messages or require a

https://cloud.google.com/pubsub/docs/reference/libraries


1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 26/40

precise cap on a number of messages retrieved by the client at any given time. To support such
applications, the service supports a synchronous Pull method.

Here is some sample code to pull
 (/pubsub/docs/reference/rpc/google.pubsub.v1#google.pubsub.v1.PullRequest) and acknowledge
 (/pubsub/docs/reference/rpc/google.pubsub.v1#modifyackdeadlinerequest) a �xed number of
messages:

https://cloud.google.com/pubsub/docs/reference/rpc/google.pubsub.v1#google.pubsub.v1.PullRequest
https://cloud.google.com/pubsub/docs/reference/rpc/google.pubsub.v1#modifyackdeadlinerequest


1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 27/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 28/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 29/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 30/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 31/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 32/40

Note that to achieve low message delivery latency with synchronous pull, it is important to have
many simultaneously outstanding pull requests. As the throughput of the topic increases, more
pull requests are necessary. In general, asynchronous pull (/pubsub/docs/pull#asynchronous-pull)

is preferable for latency-sensitive applications.

https://cloud.google.com/pubsub/docs/pull#asynchronous-pull


1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 33/40

An individual message's processing may exceed the precon�gured acknowledgement deadline,
also known as the lease. To avoid redelivery on these messages, the client libraries provide a
way to reset their acknowledgement deadlines (except for the Go client library, which
automatically modi�es the acknowledgement deadlines for polled messages), as shown by the
samples below:



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 34/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 35/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 36/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 37/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 38/40



1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 39/40

You may need to implement a scaling mechanism for your subscriber application to keep up
with message volume. How to do this depends on your environment, but it will generally be
based on backlog metrics offered through the Stackdriver (/monitoring) monitoring service. For
details on how to do this for Compute Engine, see Scaling based on Cloud Monitoring Metrics
 (/compute/docs/autoscaler/scaling-cloud-monitoring-metrics).

Go to the Pub/Sub section of the GCP Metrics List (/monitoring/api/metrics_gcp#gcp-pubsub) page
to learn which metrics can be monitored programmatically.

Finally, as with all distributed services, expect to occasionally retry every request.

When you do not acknowledge a message before its acknowledgement deadline
 (/pubsub/docs/subscriber#delivery) has expired, Pub/Sub resends the message. As a result,
Pub/Sub can send duplicate messages. Use Stackdriver to monitor (/pubsub/docs/monitoring)

acknowledge operations with the expired response code to detect this condition. To get this
data, select the Acknowledge message operations metric, then group or �lter it by the
response_code label. Note that response_code is a system label on a metric—it is not a metric.

https://cloud.google.com/monitoring
https://cloud.google.com/compute/docs/autoscaler/scaling-cloud-monitoring-metrics
https://cloud.google.com/monitoring/api/metrics_gcp#gcp-pubsub
https://cloud.google.com/pubsub/docs/subscriber#delivery
https://cloud.google.com/pubsub/docs/monitoring


1/25/2020 Receiving messages using Pull  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/pull/ 40/40

To reduce the duplication rate, extend the message deadline.

Client libraries handle deadline extension automatically, but you should note that there are
default limits on the maximum extension deadline that can be con�gured.

If you are building your own client library, use the modifyAckDeadline method to extend
the acknowledgement deadline.

Alternately, to force Pub/Sub to retry a message, set modifyAckDeadline to 0.


