
1/25/2020 Replaying and purging messages  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/replay-overview/ 1/4

The Pub/Sub subscriber data APIs, such as pull, provide limited access to message data. Normally,
acknowledged messages are inaccessible to subscribers of a given subscription. In addition,
subscriber clients must process every message in a subscription even if only a subset is needed.

The Seek feature extends subscriber functionality by allowing you to alter the acknowledgement
state of messages in bulk. For example, you can replay previously acknowledged messages or purge
messages in bulk. In addition, you can copy the state of one subscription to another by using seek in
combination with a Snapshot, introduced as part of the seek feature. Recovering acknowledged
messages generally requires the source subscription to be con�gured in advance and results in
additional storage fees.

These features are described below. However, you can look at the quickstart (/pubsub/docs/replay-qs)

for a working example.

Seeking to a time marks every message received by Pub/Sub before the time as acknowledged, and
all messages received after the time as unacknowledged. You can seek to a time in the future to
purge messages. To replay and reprocess previously acknowledged messages, seek to a prior time.
The message publication time is generated by the Pub/Sub servers (see publishTime
 (/pubsub/docs/reference/rest/v1/PubsubMessage) in the API reference). This approach is imprecise due
to:

Possible clock skew among Pub/Sub servers.

The fact that Pub/Sub has to work with the arrival time of the publish request rather than when
an event occurred in the source system.

To seek to a prior time, you must �rst con�gure your subscription to retain acknowledged messages:

An acknowledged message is retained in a subscription only if the subscription’s
retain_acked_messages
 (/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.retain_acked_
messages)

property is set to true (the default is false), for up to message_retention_duration

https://cloud.google.com/pubsub/docs/replay-qs
https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage
https://cloud.google.com/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.retain_acked_messages
https://cloud.google.com/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_retention_duration


1/25/2020 Replaying and purging messages  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/replay-overview/ 2/4

 (/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_rete
ntion_duration)

after it is published (the default is 7 days). Acknowledged messages are retained only if they
are acknowledged after the subscription’s retain_acked_messages
 (/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.retain_acked_
messages)

is set to true.

An unacknowledged message is retained in a subscription for up to
message_retention_duration
 (/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_rete
ntion_duration)

after it is published (the default is 7 days).

Both the retain_acked_messages
 (/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.retain_acked_
messages)

and the message_retention_duration
 (/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_rete
ntion_duration)

properties of a subscription can be speci�ed at subscription creation, or updated for an existing
subscription.

When you modify either the message retention duration or subscription expiration policy, the expiration duration mus

a value greater than the message retention duration. The defaults are 7 and 31 days, respectively.

The snapshot feature allows you to capture the message acknowledgment state of a subscription.
Once a snapshot is created, it retains:

All messages that were unacknowledged in the source subscription at the time of the
snapshot's creation.

Any messages published to the topic thereafter.

You can replay these unacknowledged messages by using a snapshot to seek to any of the topic's
subscriptions.

Unlike with seeking to a time, you don't need to perform any special subscription con�guration to
seek to a snapshot. You just need to create the snapshot ahead of time. For example, you might

https://cloud.google.com/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_retention_duration
https://cloud.google.com/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.retain_acked_messages
https://cloud.google.com/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_retention_duration
https://cloud.google.com/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.retain_acked_messages
https://cloud.google.com/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_retention_duration


1/25/2020 Replaying and purging messages  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/replay-overview/ 3/4

create a snapshot when deploying new subscriber code, in case you need to recover from unexpected
or erroneous acknowledgements.

Snapshots expire and are deleted in the following cases (whichever comes �rst):

The snapshot reaches a lifespan of seven days.

The oldest unacknowledged message in the snapshot exceeds the message retention
duration
 (/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_rete
ntion_duration)

.

For example, consider a snapshot of a subscription with a backlog where the oldest unacknowledged
message is a day old. The snapshot expires after six days, rather than seven. This timeline is
necessary for snapshots to offer strong at-least-once delivery guarantees.

Seek operations are strictly consistent in regard to message delivery guarantees. This means that
any message that is to become unacknowledged based on the seek condition is guaranteed to be
eventually delivered at least once after the seek operation succeeds. However, delivered messages do
not instantly become consistent with the seek operation. So a message that was published before
the seek timestamp or that is acknowledged in a snapshot might be delivered after the seek
operation. In a sense, message delivery operates as an eventually consistent system with respect to
the seek operation: it might take as long as a minute for the operation to take full effect.

Update subscriber code safely. A concern with deploying new subscriber code is that the new
executable may erroneously acknowledge messages, leading to message loss. Incorporating
snapshots into your deployment process gives you a way to recover from bugs in new
subscriber code.

Recover from unexpected subscriber problems. In cases where subscriber problems are not
associated with a speci�c deployment event, you might not have a relevant snapshot. In this
case, if you have enabled acknowledged message retention for a subscription, seeking to a
past time gives you a way to recover from the error.

Save processing time and cost. Perform a bulk acknowledgement on a large backlog of
messages that are no longer relevant.

https://cloud.google.com/pubsub/docs/reference/rest/v1/projects.subscriptions/create#body.request_body.FIELDS.message_retention_duration


1/25/2020 Replaying and purging messages  |  Cloud Pub/Sub Documentation

https://cloud.google.com/pubsub/docs/replay-overview/ 4/4

Test subscriber code on known data. When testing subscriber code for performance and
consistency, it is useful to use the same data in every run. Snapshots enable consistent data
with strong semantics. In addition, snapshots can be applied to any subscription on a given
topic, including a newly created one.

You can use Pub/Sub with Data�ow (/data�ow/docs/). However, we do not recommend direct access
to Pub/Sub Seek from within a running Data�ow pipeline. For the recommended work�ow, see Using
Pub/Sub with Data�ow (/data�ow/docs/guides/using-cloud-pubsub-seek).

https://cloud.google.com/dataflow/docs/
https://cloud.google.com/dataflow/docs/guides/using-cloud-pubsub-seek

