
1/25/2020 Subscriber overview | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/subscriber/ 1/6

This document gives an overview of how subscriptions work in Pub/Sub. For details on pull and
push delivery subscriptions, see the Pull Subscriber Guide (/pubsub/docs/pull) and the Push Subscriber
Guide (/pubsub/docs/push).

To receive messages published to a topic, you must create a subscription to that topic. Only
messages published to the topic after the subscription is created are available to subscriber
applications. The subscription connects the topic to a subscriber application that receives and
processes messages published to the topic. A topic can have multiple subscriptions, but a given
subscription belongs to a single topic.

To learn about creating and updating subscriptions, see Managing Topics and Subscriptions
 (/pubsub/docs/admin).

Pub/Sub delivers each published message at least once for every subscription. There are some
exceptions to this at-least-once behavior:

By default, a message that cannot be delivered within the maximum retention time of 7 days is
deleted and is no longer accessible. This typically happens when subscribers do not keep up
with the �ow of messages. Note that you can con�gure message retention duration (the range
is from 10 minutes to 7 days). See Replaying & Discarding Messages
 (/pubsub/docs/replay-overview) for more information about the message retention setting.

A message published before a given subscription was created will usually not be delivered for
that subscription. Thus, a message published to a topic that has no subscription will not be
delivered to any subscriber.

Once a message is sent to a subscriber, the subscriber should acknowledge the message. A message
is considered outstanding once it has been sent out for delivery and before a subscriber
acknowledges it. Pub/Sub will repeatedly attempt to deliver any message that has not been
acknowledged. While a message is outstanding to a subscriber, however, Pub/Sub tries not to deliver
it to any other subscriber on the same subscription. The subscriber has a con�gurable, limited
amount of time -- known as the ackDeadline -- to acknowledge the outstanding message. Once the
deadline passes, the message is no longer considered outstanding, and Pub/Sub will attempt to
redeliver the message.

Typically, Pub/Sub delivers each message once and in the order in which it was published. However,
messages may sometimes be delivered out of order or more than once. In general, accommodating

https://cloud.google.com/pubsub/docs/pull
https://cloud.google.com/pubsub/docs/push
https://cloud.google.com/pubsub/docs/admin
https://cloud.google.com/pubsub/docs/replay-overview

1/25/2020 Subscriber overview | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/subscriber/ 2/6

more-than-once delivery requires your subscriber to be idempotent
 (http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning) when processing messages. You
can achieve exactly once processing of Pub/Sub message streams using the Apache Beam
programming model (/data�ow/docs/concepts/beam-programming-model). The Apache Beam I/O
connectors lets you interact with Cloud Data�ow (/data�ow/docs/concepts/streaming-with-cloud-pubsub)

via controlled sources and sinks. You can use the Apache Beam PubSubIO connector (for Java
 (https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/io/gcp/pubsub/PubsubIO.html)

and Python (https://beam.apache.org/releases/pydoc/current/apache_beam.io.gcp.pubsub.html)) to read
from Cloud Pub/Sub. You can also achieve ordered processing with Cloud Data�ow by using the
standard sorting APIs of the service. Alternatively, to achieve ordering, the publisher of the topic to
which you subscribe can include a sequence token in the message. See Message Ordering
 (/pubsub/docs/ordering) for more information.

A subscription can use either the pull or push mechanism for message delivery. You can change or
con�gure the mechanism at any time.

In pull delivery, your subscriber application initiates requests to the Pub/Sub server to retrieve
messages.

1. The subscribing application explicitly calls the pull method, which requests messages for
delivery.

2. The Pub/Sub server responds with the message (or an error if the queue is empty) , and an ack
ID.

3. The subscriber explicitly calls the acknowledge method, using the returned ack ID to
acknowledge receipt.

http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
https://cloud.google.com/dataflow/docs/concepts/beam-programming-model
https://cloud.google.com/dataflow/docs/concepts/streaming-with-cloud-pubsub
https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/io/gcp/pubsub/PubsubIO.html
https://beam.apache.org/releases/pydoc/current/apache_beam.io.gcp.pubsub.html
https://cloud.google.com/pubsub/docs/ordering

1/25/2020 Subscriber overview | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/subscriber/ 3/6

Subscriber

Subscriber

Cloud Pub/Sub

Cloud Pub/Sub

Cloud Pub/Sub

Pull calls

Acks

Messages

In push delivery, Pub/Sub initiates requests to your subscriber application to deliver messages.

New push subscriptions cannot be created for any projects protected by VPC Service Controls (/vpc-service-controls

g push subscriptions will continue to function, although they will not be protected by VPC Service Controls. Contact

e Cloud administrator for more details.

1. The Pub/Sub server sends each message as an HTTPS request to the subscriber application at
a pre-con�gured endpoint.

2. The endpoint acknowledges the message by returning an HTTP success status code. A non-
success response indicates that the message should be resent.

https://cloud.google.com/vpc-service-controls/

1/25/2020 Subscriber overview | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/subscriber/ 4/6

Subscriber

Subscriber

Cloud Pub/Sub

Cloud Pub/Sub

Cloud Pub/Sub

Acks

(optional)
Modify ack deadline

Messages

Pub/Sub dynamically adjusts the rate of push requests based on the rate at which it receives
success responses.

The following table offers some guidance in choosing the appropriate delivery mechanism for your
application:

Pull Push

Large volume of messages (many more than
1/second).

E�ciency and throughput of message processing is
critical.

Public HTTPS endpoint, with non-self-signed SSL
certi�cate, is not feasible to set up.

Multiple topics that must be processed by the same
webhook.

App Engine Standard and Cloud Functions
subscribers.

Environments where Google Cloud dependencies
(such as credentials and the client library) are not
feasible to set up.

The following table compares pull and push delivery:

 Pull Push

Endpoints Any device on the internet that has authorized
credentials is able to call the Pub/Sub API.

An HTTPS server with non-self-signed
certi�cate accessible on the public web. The
receiving endpoint may be decoupled from
the Pub/Sub subscription, so that messages
from multiple subscriptions may be sent to a
single endpoint.

Load Multiple subscribers can make pull calls to the same The push endpoint can be a load balancer.

1/25/2020 Subscriber overview | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/subscriber/ 5/6

balancing "shared" subscription. Each subscriber will receive a
subset of the messages.

Con�guration No con�guration is necessary. No con�guration is necessary for App Engine
apps in the same project as the subscriber.
Con�guration (and veri�cation) of push
endpoints is required in the Google Cloud
Console for all other endpoints. Endpoints
must be reachable via DNS names and have
SSL certi�cates installed.

Flow control The subscriber client controls the rate of delivery. The
subscriber can dynamically modify the ack deadline,
allowing message processing to be arbitrarily long.

The Pub/Sub server automatically
implements �ow control. There is no need to
handle message �ow at the client side,
although it is possible to indicate that the
client cannot handle the current message
load by passing back an HTTP error.

E�ciency and
throughput

Achieves high throughput at low CPU and bandwidth
by allowing batched delivery and acknowledgments as
well as massively parallel consumption. May be
ine�cient if aggressive polling is used to minimize
message delivery time.

Delivers one message per request and limits
maximum number of outstanding messages.

By default, subscriptions expire after 31 days of inactivity (for instance, if there are no active
connections, pull requests, or push successes). If Pub/Sub detects subscriber activity, the
subscription deletion clock restarts. Using subscription expiration policies, you can con�gure the
inactivity duration or make the subscription persistent regardless of activity. You can also delete a
subscription manually.

Note that although you can create a new subscription with the same name as a deleted one, the new
subscription has no relationship to the old one. Even if the deleted subscription had a large number
of unacknowledged messages, a new identically-named subscription would have no backlog (no
messages waiting for delivery) at the time it is created.

For more information about working with subscriptions, see Con�guring subscriptions
 (/pubsub/docs/admin#con�guring_subscriptions).

https://cloud.google.com/pubsub/docs/admin#configuring_subscriptions

1/25/2020 Subscriber overview | Cloud Pub/Sub | Google Cloud

https://cloud.google.com/pubsub/docs/subscriber/ 6/6

