
1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 1/10

Python Guides

Django apps that run on App Engine standard environment (https://cloud.google.com/appengine)

scale dynamically according to tra�c.

This tutorial assumes that you're familiar with Django web development. If you're new to
Django development, it's a good idea to work through writing your �rst Django app
 (https://docs.djangoproject.com/en/1.11/intro/tutorial01/) before continuing. In that tutorial, the

app's models represent polls that contain questions, and you can interact with the models by
using the Django admin console.

This tutorial requires Python 3.7 (https://www.python.org/).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

 (https://cloud.google.com/python/)

Running Django on the App Engine standard
environment

https://cloud.google.com/python/
https://cloud.google.com/docs/overview/
https://cloud.google.com/appengine
https://docs.djangoproject.com/en/1.11/intro/tutorial01/
https://www.python.org/
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 2/10

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Install and initialize the Cloud SDK (https://cloud.google.com/sdk/docs/).

5. Enable the Datastore, Pub/Sub, Cloud Storage JSON, Stackdriver Logging, and Google+
APIs.

ENABLE THE APIS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=DATASTOR

Log in to gcloud

Acquire new credentials to use the Cloud SQL Admin API:

Downloading and running the app

After you've completed the prerequisites, download and deploy the Django sample app. The
following sections guide you through con�guring, running, and deploying the app.

Cloning the Django app

The code for the Django sample app is in the GoogleCloudPlatform/python-docs-samples
 (https://github.com/GoogleCloudPlatform/python-docs-samples) repository on GitHub.

1. You can either download the sample
 (https://github.com/GoogleCloudPlatform/python-docs-samples/archive/master.zip) as a zip �le
and extract it or clone the repository to your local machine:

git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

2. Go to the directory that contains the sample code:

cd python-docs-samples/appengine/standard_python37/django

gcloud auth application-default login

LINUX/MACOS WINDOWS

https://cloud.google.com/billing/docs/how-to/modify-project
https://cloud.google.com/sdk/docs/
https://console.cloud.google.com/flows/enableapi?apiid=datastore.googleapis.com,pubsub,storage_api,logging,plus
https://github.com/GoogleCloudPlatform/python-docs-samples
https://github.com/GoogleCloudPlatform/python-docs-samples/archive/master.zip

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 3/10

Se�ing up your local environment

When deployed, your app uses the Cloud SQL Proxy that is built in to the App Engine
environment to communicate with your Cloud SQL instance. However, to test your app locally,
you must install and use a local copy of the proxy in your development environment.

Learn more about the Cloud SQL Proxy (https://cloud.google.com/sql/docs/mysql/sql-proxy).

To perform basic admin tasks on your Cloud SQL instance, you can use the MySQL client.

Note: You must authenticate gcloud (https://cloud.google.com/sql/docs/mysql/sql-proxy#gcloud) before

you can use the Cloud SQL Proxy to connect from your local machine.

Enable the Cloud SQL Admin API

Before using Cloud SQL, you must enable the Cloud SQL Admin API:

Installing the Cloud SQL Proxy

Download and install the Cloud SQL Proxy. The Cloud SQL Proxy connects to your Cloud SQL
instance when running locally.

1. Download the proxy:

2. Make the proxy executable:

If your operating system isn't included here, you can also compile the proxy from source
 (http://github.com/GoogleCloudPlatform/cloudsql-proxy).

gcloud services enable sqladmin

LINUX 64-BIT LINUX 32-BIT MORE

wget https://dl.google.com/cloudsql/cloud_sql_proxy.linux.amd64 -O cloud_sql_

chmod +x cloud_sql_proxy

https://cloud.google.com/sql/docs/mysql/sql-proxy
https://cloud.google.com/sql/docs/mysql/sql-proxy#gcloud
http://github.com/GoogleCloudPlatform/cloudsql-proxy

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 4/10

Creating a Cloud SQL instance

1. Create a Cloud SQL for MySQL Second Generation instance.
 (https://cloud.google.com/sql/docs/mysql/create-instance)

Name the instance polls-instance or similar. It can take a few minutes for the instance
to be ready. When the instance is ready, it's visible in the instances list.

Make sure that you create a Second Generation instance.

2. Use the Cloud SDK to run the following command where [YOUR_INSTANCE_NAME]
represents the name of your Cloud SQL instance:

In the output, note the value shown for [CONNECTION_NAME].

The [CONNECTION_NAME] value is in the format [PROJECT_NAME]:[REGION_NAME]:
[INSTANCE_NAME].

Initializing your Cloud SQL instance

1. Start the Cloud SQL Proxy by using the [CONNECTION_NAME] value from the previous step:

Replace [YOUR_INSTANCE_CONNECTION_NAME] with the [CONNECTION_NAME] value that you
recorded in the previous step.

This step establishes a connection from your local computer to your Cloud SQL instance
for local testing purposes. Keep the Cloud SQL Proxy running the entire time you test your
app locally.

2. Create a Cloud SQL user and database:

gcloud sql instances describe [YOUR_INSTANCE_NAME]

LINUX/MACOS WINDOWS

./cloud_sql_proxy -instances="[YOUR_INSTANCE_CONNECTION_NAME]"=tcp:3306

CLOUD CONSOLE MYSQL CLIENT

https://cloud.google.com/sql/docs/mysql/create-instance

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 5/10

a. Create a new database by using the Cloud Console
 (https://cloud.google.com/sql/docs/mysql/create-manage-databases#create) for your
Cloud SQL instance polls-instance. For example, you can use the name polls.

b. Create a new user by using the Cloud Console
 (https://cloud.google.com/sql/docs/mysql/create-manage-users#creating) for your Cloud
SQL instance polls-instance.

Con�guring the database se�ings

1. Open mysite/settings.py for editing.

a. To help set up the connection to the database for both App Engine deployment and
local testing, set <your-database-user> and <your-database-password> to the
username and password you created previously in the step Creating a Cloud SQL
instance (#creating_a_cloud_sql_instance).

b. Get the values for your instance:

c. From the output, copy the connectionName value for use in the next step.

d. Set <your-cloudsql-connection-string> to the connectionName from the previous
step.

e. Set [YOUR-DATABASE] to the name you chose during the Initialize your Cloud SQL
instance (#initializing_your_cloud_sql_instance) step.

2. Close and save settings.py.

Running the app on your local computer

1. To run the Django app on your local computer, set up a Python development environment
 (https://cloud.google.com/python/setup), including Python, pip, and virtualenv.

2. Create an isolated Python environment, and install dependencies:

gcloud sql instances describe [YOUR_INSTANCE_NAME]

LINUX/MACOS WINDOWS

https://cloud.google.com/sql/docs/mysql/create-manage-databases#create
https://cloud.google.com/sql/docs/mysql/create-manage-users#creating
https://cloud.google.com/python/setup

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 6/10

3. Run the Django migrations to set up your models:

4. Start a local web server:

5. In your browser, go to http://localhost:8000 (http://localhost:8000):

The page displays the following text: "No polls are available." The Django web server
running on your computer delivers the sample app pages.

6. Press Control+C to stop the local web server.

Using the Django admin console

1. Create a superuser. You need to de�ne a username and password.

2. Start a local web server:

3. In your browser, go to http://localhost:8000/admin (http://localhost:8000/admin).

virtualenv env
source env/bin/activate
pip install -r requirements.txt

python manage.py makemigrations
python manage.py makemigrations polls
python manage.py migrate

python manage.py runserver

http://localhost:8000

python manage.py createsuperuser

python manage.py runserver

http://localhost:8000/admin

http://localhost:8000/
http://localhost:8000/admin

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 7/10

4. Log in to the admin site using the username and password you used when you ran
createsuperuser.

Deploying the app to the App Engine standard environment

1. Gather all the static content into one folder by moving all of the app's static �les into the
folder speci�ed by STATIC_ROOT in settings.py:

2. Upload the app by running the following command from within the python-docs-
samples/appengine/standard/django directory of the app where the app.yaml �le is
located:

Wait for the message that noti�es you that the update has completed.

Seeing the app run in Google Cloud

The following command deploys the app as described in app.yaml and sets the newly deployed
version as the default version, causing it to serve all new tra�c.

In your browser, enter the following address. Replace <your-project-id> with your Google
Cloud project ID.

Your request is served by a web server running in the App Engine standard environment.

If you update your app, you deploy the updated version by entering the same command that
you used to deploy the app. The deployment creates a new version
 (https://console.cloud.google.com/project/_/appengine/versions) of your app and promotes it to the
default version. The earlier versions of your app remain. All of these app versions are billable
resources. To reduce costs, delete the non-default versions of your app.

python manage.py collectstatic

gcloud app deploy

https://<your-project-id>.appspot.com

https://console.cloud.google.com/project/_/appengine/versions

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 8/10

appengine/standard_python37/django/mysite/settings.py
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/master/appengine/standard_python37/django/mysite/settings.py)

N-DOCS-SAMPLES/BLOB/MASTER/APPENGINE/STANDARD_PYTHON37/DJANGO/MYSITE/SETTINGS.PY)

For information about deleting the non-default versions of your app, see Cleaning up
 (https://cloud.google.com/python/getting-started/delete-tutorial-resources).

Production

When you are ready to serve your content in production, in mysite/settings.py, change the
DEBUG variable to False.

Note: In this tutorial, credentials for connecting to your SQL database are added to the code. In a production

setting, however, you should use Cloud Key Management Service (https://cloud.google.com/kms) and Cloud

IAM (https://cloud.google.com/iam) to manage and control access securely.

Understanding the code

The Django sample app was created using standard Django tooling.

The following commands create the project and the polls app:

The settings.py �le contains the con�guration for your SQL database. The code in
settings.py uses the GAE_APPLICATION environment variable to determine whether the
app is running on App Engine or running on your local computer:

When the app runs on App Engine, it connects to the MySQL host by using the
/cloudsql Unix socket.

When the app runs on your local computer, it connects to the MySQL host by using
TCP, which requires a username and password.

django-admin startproject mysite

python manage.py startapp polls

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/appengine/standard_python37/django/mysite/settings.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/appengine/standard_python37/django/mysite/settings.py
https://cloud.google.com/python/getting-started/delete-tutorial-resources
https://cloud.google.com/kms
https://cloud.google.com/iam

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 9/10

appengine/standard_python37/django/app.yaml
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/master/appengine/standard_python37/django/app.yaml)

ORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/APPENGINE/STANDARD_PYTHON37/DJANGO/APP.YAML)

The app.yaml (https://cloud.google.com/appengine/docs/standard/python3/con�g/appref) �le
contains con�guration information for deployment to App Engine. This app.yaml �le
speci�es that App Engine serves static �les from the static/ directory:

if os.getenv('GAE_APPLICATION', None):
 # Running on production App Engine, so connect to Google Cloud SQL using
 # the unix socket at /cloudsql/<your-cloudsql-connection string>
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'HOST': '/cloudsql/[YOUR-CONNECTION-NAME]',
 'USER': '[YOUR-USERNAME]',
 'PASSWORD': '[YOUR-PASSWORD]',
 'NAME': '[YOUR-DATABASE]',
 }
 }
else:
 # Running locally so connect to either a local MySQL instance or connect to
 # Cloud SQL via the proxy. To start the proxy via command line:
 #
 # $ cloud_sql_proxy -instances=[INSTANCE_CONNECTION_NAME]=tcp:3306
 #
 # See https://cloud.google.com/sql/docs/mysql-connect-proxy
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'HOST': '127.0.0.1',
 'PORT': '3306',
 'NAME': '[YOUR-DATABASE]',
 'USER': '[YOUR-USERNAME]',
 'PASSWORD': '[YOUR-PASSWORD]',
 }
 }

runtime: python37

handlers:
This configures Google App Engine to serve the files in the app's static
directory.

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/appengine/standard_python37/django/app.yaml
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/appengine/standard_python37/django/app.yaml
https://cloud.google.com/appengine/docs/standard/python3/config/appref

1/23/2020 Running Django on the App Engine standard environment | Python | Google Cloud

https://cloud.google.com/python/django/appengine 10/10

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 5, 2019.

- url: /static
 static_dir: static/

This handler routes all requests not caught above to your main app. It is
required when static routes are defined, but can be omitted (along with
the entire handlers section) when there are no static files defined.
- url: /.*
 script: auto

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

