
1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 1/10



Python Guides

Django apps that run on the App Engine �exible environment
 (https://cloud.google.com/appengine/docs/�exible/) are running on the same infrastructure that
powers all of Google's products, which generally improves scalability.

This tutorial assumes you're familiar with Django web development. If you're new to Django
development, it's a good idea to work through writing your �rst Django app
 (https://docs.djangoproject.com/en/1.9/intro/tutorial01/) before continuing. In that tutorial, the

app's models represent polls that contain questions, and you can interact with the models by
using the Django admin console.

This tutorial requires Python 3.4 or later (https://www.python.org/).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

 (https://cloud.google.com/python/)

Running Django in the App Engine �exible
environment

https://cloud.google.com/python/
https://cloud.google.com/docs/overview/
https://cloud.google.com/appengine/docs/flexible/
https://docs.djangoproject.com/en/1.9/intro/tutorial01/
https://www.python.org/
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 2/10

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Install and initialize the Cloud SDK (https://cloud.google.com/sdk/docs/).

5. Enable the Datastore, Pub/Sub, Cloud Storage JSON, Stackdriver Logging, and Google+
APIs.

ENABLE THE APIS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=DATASTOR

Log in to gcloud

Acquire new credentials to use the Cloud SQL Admin API:

Downloading and running the app

After you've completed the prerequisites, download and deploy the Django sample app. The
following sections guide you through con�guring, running, and deploying the app.

Cloning the Django app

The code for the Django sample app is in the GoogleCloudPlatform/python-docs-samples
 (https://github.com/GoogleCloudPlatform/python-docs-samples) repository on GitHub.

1. You can either download the sample
 (https://github.com/GoogleCloudPlatform/python-docs-samples/archive/master.zip) as a zip �le
and extract it or clone the repository to your local machine:

git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

2. Go to the directory that contains the sample code:

cd python-docs-samples/appengine/�exible/django_cloudsql

gcloud auth application-default login  

LINUX/MACOS WINDOWS

https://cloud.google.com/billing/docs/how-to/modify-project
https://cloud.google.com/sdk/docs/
https://console.cloud.google.com/flows/enableapi?apiid=datastore.googleapis.com,pubsub,storage_api,logging,plus
https://github.com/GoogleCloudPlatform/python-docs-samples
https://github.com/GoogleCloudPlatform/python-docs-samples/archive/master.zip

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 3/10

Se�ing up your local environment

When deployed, your app uses the Cloud SQL Proxy that is built in to the App Engine
environment to communicate with your Cloud SQL instance. However, to test your app locally,
you must install and use a local copy of the proxy in your development environment.

Learn more about the Cloud SQL Proxy (https://cloud.google.com/sql/docs/postgres/sql-proxy).

To perform basic admin tasks on your Cloud SQL instance, you can use the PostgreSQL client.

Note: You must authenticate gcloud (https://cloud.google.com/sql/docs/postgres/sql-proxy#gcloud)

before you can use the Cloud SQL Proxy to connect from your local machine.

Enable the Cloud SQL Admin API

Before using Cloud SQL, you must enable the Cloud SQL Admin API:

Installing the Cloud SQL Proxy

Download and install the Cloud SQL Proxy. The Cloud SQL Proxy connects to your Cloud SQL
instance when running locally.

1. Download the proxy:

2. Make the proxy executable:

If your operating system isn't included here, you can also compile the proxy from source
 (http://github.com/GoogleCloudPlatform/cloudsql-proxy).

gcloud services enable sqladmin  

LINUX 64-BIT LINUX 32-BIT MORE

wget https://dl.google.com/cloudsql/cloud_sql_proxy.linux.amd64 -O cloud_sql_ 

chmod +x cloud_sql_proxy  

https://cloud.google.com/sql/docs/postgres/sql-proxy
https://cloud.google.com/sql/docs/postgres/sql-proxy#gcloud
http://github.com/GoogleCloudPlatform/cloudsql-proxy

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 4/10

Creating a Cloud SQL instance

1. Create a Cloud SQL for PostgreSQL instance.
 (https://cloud.google.com/sql/docs/postgres/create-instance)

Name the instance polls-instance or similar. It can take a few minutes for the instance
to be ready. When the instance is ready, it's visible in the instances list.

2. Use the Cloud SDK to run the following command where [YOUR_INSTANCE_NAME]
represents the name of your Cloud SQL instance:

In the output, note the value shown for [CONNECTION_NAME].

The [CONNECTION_NAME] value is in the format [PROJECT_NAME]:[REGION_NAME]:
[INSTANCE_NAME].

Initializing your Cloud SQL instance

1. Start the Cloud SQL Proxy by using the [CONNECTION_NAME] value from the previous step:

Replace [YOUR_INSTANCE_CONNECTION_NAME] with the [CONNECTION_NAME] value that you
recorded in the previous step.

This step establishes a connection from your local computer to your Cloud SQL instance
for local testing purposes. Keep the Cloud SQL Proxy running the entire time you test your
app locally.

2. Create a Cloud SQL user and database:

a. Create a new database by using the Cloud Console
 (https://cloud.google.com/sql/docs/postgres/create-manage-databases#create) for your
Cloud SQL instance polls-instance. For example, you can use the name polls.

gcloud sql instances describe [YOUR_INSTANCE_NAME]  

LINUX/MACOS WINDOWS

./cloud_sql_proxy -instances="[YOUR_INSTANCE_CONNECTION_NAME]"=tcp:5432  

CLOUD CONSOLE POSTGRES CLIENT

https://cloud.google.com/sql/docs/postgres/create-instance
https://cloud.google.com/sql/docs/postgres/create-manage-databases#create

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 5/10

b. Create a new user by using the Cloud Console
 (https://cloud.google.com/sql/docs/postgres/create-manage-users#creating) for your
Cloud SQL instance polls-instance.

Con�guring the database se�ings

1. Open mysite/settings.py for editing.

a. To use MySQL instead of PostgreSQL:

i. Follow the instructions in the �le comments to enable the MySQL database
driver.

ii. Open requirements.txt for editing and follow the instructions to add the
MySQL database driver to your dependencies.

b. To help set up the connection to the database for both App Engine deployment and
local testing, set <your-database-user> and <your-database-password> to the
username and password you created previously in the step Creating a Cloud SQL
instance (#creating_a_cloud_sql_instance)

c. Get the values for your instance:

d. From the output, copy the connectionName value for use in the next step.

e. Set <your-cloudsql-connection-string> to the connectionName from the previous
step.

2. Close and save settings.py.

Running the app on your local computer

1. To run the Django app on your local computer, set up a Python development environment
 (https://cloud.google.com/python/setup), including Python, pip, and virtualenv.

2. Create an isolated Python environment and install dependencies:

gcloud sql instances describe [YOUR_INSTANCE_NAME]  

https://cloud.google.com/sql/docs/postgres/create-manage-users#creating
https://cloud.google.com/python/setup

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 6/10

3. Run the Django migrations to set up your models:

4. Start a local web server:

5. In your browser, go to http://localhost:8000 (http://localhost:8000).

The page displays the following text: "Hello, world. You're at the polls index." The Django
web server running on your computer delivers the sample app pages.

6. Press Control+C to stop the local web server.

Using the Django admin console

1. Create a superuser. You need to de�ne a username and password.

2. Start a local web server:

3. In your browser, go to http://localhost:8000/admin (http://localhost:8000/admin).

LINUX/MACOS WINDOWS

virtualenv env
source env/bin/activate
pip install -r requirements.txt

 

python manage.py makemigrations
python manage.py makemigrations polls
python manage.py migrate

 

python manage.py runserver  

http://localhost:8000  

python manage.py createsuperuser  

python manage.py runserver  

http://localhost:8000/admin  

http://localhost:8000/
http://localhost:8000/admin

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 7/10

4. Log in to the admin site using the username and password you used when you ran
createsuperuser.

Deploying the app to the App Engine �exible environment

When the app is deployed to Google Cloud, it uses the Gunicorn server. Gunicorn doesn't serve
static content, so the app uses Cloud Storage to serve static content.

1. Create a Cloud Storage bucket:

a. Create a Cloud Storage bucket and make it publicly readable. Replace <your-gcs-
bucket> with a bucket name of your choice. For example, you could use your project
ID as a bucket name.

b. Gather all the static content locally into one folder:

c. Upload the static content to Cloud Storage:

2. Edit settings.py:

a. Open mysite/settings.py for editing.

b. Set the value of STATIC_URL to the following URL. Replace <your-gcs-bucket> with
the bucket name you created earlier.

c. Close and save settings.py.

3. Edit app.yaml:

a. Open app.yaml for editing.

b. Run the following command from the command line:

gsutil mb gs://<your-gcs-bucket>
gsutil defacl set public-read gs://<your-gcs-bucket>

 

python manage.py collectstatic  

gsutil rsync -R static/ gs://<your-gcs-bucket>/static  

https://storage.googleapis.com/<your-gcs-bucket>/static/  

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 8/10

c. From the output, copy the connectionName value for use in the next step.

d. Replace <your-cloudsql-connection-string> with connectionName from the
previous step.

e. Close and save app.yaml.

4. Deploy the sample:

Wait for the message that noti�es you that the update has completed.

Seeing the app run in Google Cloud

The following command deploys the app as described in app.yaml and sets the newly deployed
version as the default version, causing it to serve all new tra�c.

In your browser, enter the following address. Replace <your-project-id> with your Google
Cloud project ID.

Your request is served by a web server running in the App Engine �exible environment.

As the app deploys, you might see several repeated messages while the platform checks
whether the app is serving. This is normal. Wait for the message that noti�es you that the
update of the app is complete.

If you update your app, you deploy the updated version by entering the same command that
you used to deploy the app. The deployment creates a new version
 (https://console.cloud.google.com/project/_/appengine/versions) of your app and promotes it to the
default version. The earlier versions of your app remain, as do their associated virtual machine
(VM) instances. All of these app versions and VM instances are billable resources. To reduce
costs, delete the non-default versions of your app.

For information about deleting the non-default versions of your app or stopping your VM
instances, see Cleaning up (https://cloud.google.com/python/getting-started/delete-tutorial-resources).

gcloud sql instances describe [YOUR_INSTANCE_NAME]  

gcloud app deploy  

https://<your-project-id>.appspot.com  

https://console.cloud.google.com/project/_/appengine/versions
https://cloud.google.com/python/getting-started/delete-tutorial-resources

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 9/10

appengine/�exible/django_cloudsql/mysite/settings.py
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/�exible/django_cloudsq

DE938E58B9764708931D0FA6798E/APPENGINE/FLEXIBLE/DJANGO_CLOUDSQL/MYSITE/SETTINGS.PY)

Production

When you are ready to serve your content in production, in mysite/settings.py, change the
DEBUG variable to False.

Understanding the code

The Django sample app was created by using standard Django tooling.

The following commands create the project and the polls app:

The settings.py �le contains the con�guration for your SQL database:

django-admin startproject mysite

python manage.py startapp polls

 

DATABASES = {
 'default': {
 # If you are using Cloud SQL for MySQL rather than PostgreSQL, set
 # 'ENGINE': 'django.db.backends.mysql' instead of the following.
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'polls',
 'USER': '<your-database-user>',
 'PASSWORD': '<your-database-password>',
 # For MySQL, set 'PORT': '3306' instead of the following. Any Cloud
 # SQL Proxy instances running locally must also be set to tcp:3306.
 'PORT': '5432',
 }
}
In the flexible environment, you connect to CloudSQL using a unix socket.
Locally, you can use the CloudSQL proxy to proxy a localhost connection
to the instance
DATABASES['default']['HOST'] = '/cloudsql/<your-cloudsql-connection-string>'
if os.getenv('GAE_INSTANCE'):
 pass

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/flexible/django_cloudsql/mysite/settings.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/flexible/django_cloudsql/mysite/settings.py

1/23/2020 Running Django in the App Engine flexible environment | Python | Google Cloud

https://cloud.google.com/python/django/flexible-environment 10/10

appengine/�exible/django_cloudsql/mysite/settings.py
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/�exible/django_cloudsq

DE938E58B9764708931D0FA6798E/APPENGINE/FLEXIBLE/DJANGO_CLOUDSQL/MYSITE/SETTINGS.PY)

appengine/�exible/django_cloudsql/app.yaml
 (https://github.com/GoogleCloudPlatform/python-docs-
samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/�exible/django_cloudsq

A09A2CDBCDE938E58B9764708931D0FA6798E/APPENGINE/FLEXIBLE/DJANGO_CLOUDSQL/APP.YAML)

To specify how the app serves static content, in the settings.py �le, set the value of
STATIC_URL:

The app.yaml (https://cloud.google.com/appengine/docs/python/con�g/appcon�g?hl=en) �le
contains con�guration information for deployment to the �exible environment:

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 5, 2019.

else:
 DATABASES['default']['HOST'] = '127.0.0.1'

Fill in your cloud bucket and switch which one of the following 2 lines
is commented to serve static content from GCS
STATIC_URL = 'https://storage.googleapis.com/<your-gcs-bucket>/static/'
STATIC_URL = '/static/'

 

runtime: python
env: flex
entrypoint: gunicorn -b :$PORT mysite.wsgi

beta_settings:
 cloud_sql_instances: <your-cloudsql-connection-string>

runtime_config:
 python_version: 3

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/flexible/django_cloudsql/mysite/settings.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/flexible/django_cloudsql/mysite/settings.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/flexible/django_cloudsql/app.yaml
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/a07a09a2cdbcde938e58b9764708931d0fa6798e/appengine/flexible/django_cloudsql/app.yaml
https://cloud.google.com/appengine/docs/python/config/appconfig?hl=en
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

