
1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 1/13

Django apps that run on Google Kubernetes Engine (GKE) (/kubernetes-engine/) scale well because they run on the same

infrastructure that powers all of Google's products.

This tutorial assumes you are familiar with Django web development. If you are new to Django development, it's a good idea

to work through writing your �rst Django app (https://docs.djangoproject.com/en/1.9/intro/tutorial01/) before continuing. In that

tutorial, the app's models represent polls that contain questions, and you can interact with the models by using the Django

admin console.

This tutorial requires Python 2.7 or 3.4 or later (https://www.python.org/). You also need to have Docker installed

 (https://docs.docker.com/engine/installation/).

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project.

After you �nish these steps, you can delete the project, removing all resources associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm billing is enabled for your project

 (/billing/docs/how-to/modify-project).

4. Install and initialize the Cloud SDK (/sdk/docs/).

5. Enable the Datastore, Pub/Sub, Cloud Storage JSON, Stackdriver Logging, and Google+ APIs.

Enable the APIs (https://console.cloud.google.com/�ows/enableapi?apiid=datastore.googleapis.com,pubsub,storage_api,logging,plus)

After you've completed the prerequisites, download and run the Django sample app. The following sections guide you

through con�guring, running, and deploying the app.

The code for the Django sample app is in the GoogleCloudPlatform/python-docs-samples

 (https://github.com/GoogleCloudPlatform/python-docs-samples) repository on GitHub.

1. You can either download the sample (https://github.com/GoogleCloudPlatform/python-docs-samples/archive/master.zip) as a

zip �le and extract it or clone the repository to your local machine by using the following command:

https://cloud.google.com/kubernetes-engine/
https://docs.djangoproject.com/en/1.9/intro/tutorial01/
https://www.python.org/
https://docs.docker.com/engine/installation/
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://cloud.google.com/sdk/docs/
https://console.cloud.google.com/flows/enableapi?apiid=datastore.googleapis.com,pubsub,storage_api,logging,plus
https://github.com/GoogleCloudPlatform/python-docs-samples
https://github.com/GoogleCloudPlatform/python-docs-samples/archive/master.zip

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 2/13

2. Change to the directory that contains the sample code:

When deployed, your app uses the Cloud SQL Proxy that is built in to the App Engine environment to communicate with your

Cloud SQL instance. However, to test your app locally, you must install and use a local copy of the proxy in your development

environment.

Learn more about the Cloud SQL Proxy (/sql/docs/postgres/sql-proxy).

To perform basic admin tasks on your Cloud SQL instance, you can use the PostgreSQL client.

You must authenticate gcloud (/sql/docs/postgres/sql-proxy#gcloud) before you can use the Cloud SQL Proxy to connect from your local mac

Before using Cloud SQL, you must enable the Cloud SQL Admin API:

Download and install the Cloud SQL Proxy. The Cloud SQL Proxy connects to your Cloud SQL instance when running locally.

https://cloud.google.com/sql/docs/postgres/sql-proxy
https://cloud.google.com/sql/docs/postgres/sql-proxy#gcloud

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 3/13

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 4/13

If your operating system isn't included here, you can also compile the proxy from source
 (http://github.com/GoogleCloudPlatform/cloudsql-proxy).

1. Create a Cloud SQL for PostgreSQL instance. (/sql/docs/postgres/create-instance)

Name the instance polls-instance or similar. It can take a few minutes for the instance to be ready. When the instance

is ready, it's visible in the instances list.

2. Use the Cloud SDK to run the following command where [YOUR_INSTANCE_NAME] represents the name of your Cloud SQL
instance:

In the output, note the value shown for [CONNECTION_NAME].

The [CONNECTION_NAME] value is in the format [PROJECT_NAME]:[REGION_NAME]:[INSTANCE_NAME].

1. Start the Cloud SQL Proxy by using the [CONNECTION_NAME] value from the previous step:

Replace [YOUR_INSTANCE_CONNECTION_NAME] with the [CONNECTION_NAME] value that you recorded in the previous step.

This step establishes a connection from your local computer to your Cloud SQL instance for local testing purposes.

Keep the Cloud SQL Proxy running the entire time you test your app locally.

2. Create a Cloud SQL user and database:

http://github.com/GoogleCloudPlatform/cloudsql-proxy
https://cloud.google.com/sql/docs/postgres/create-instance

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 5/13

The proxy requires a service account with Editor privileges for your Cloud SQL instance. For more information about service

accounts, see the Google Cloud authentication overview (/docs/authentication/).

To create a service account with the required permissions, you must have resourcemanager.projects.setIamPolicy permission. This

ssion is included in the Project Owner, Project IAM Admin, and Organization Administrator roles.

ust also have enabled the Cloud SQL Admin API.

When you use a service account to provide the credentials for the proxy, you must create it with su�cient permissions. If you

are using the �ner-grained Identity Access and Management (IAM) roles to manage your Cloud SQL permissions, you must

give the service account a role that includes the cloudsql.instances.connect permission. The prede�ned Cloud SQL roles that

include this permission are:

Cloud SQL Client

Cloud SQL Editor

https://cloud.google.com/docs/authentication/

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 6/13

Cloud SQL Admin

If you are using the legacy project roles (Viewer, Editor, Owner), the service account must have at least the Editor role.

1. Go to the Service accounts page of the Google Cloud Console.

Go to the Service accounts page (https://console.cloud.google.com/iam-admin/serviceaccounts/)

2. Select the project that contains your Cloud SQL instance.

3. Click Create service account.

4. In the Create service account dialog, provide a descriptive name for the service account.

5. For Role, select one of the following roles:

Cloud SQL > Cloud SQL Client

Cloud SQL > Cloud SQL Editor

Cloud SQL > Cloud SQL Admin

6. Change the Service account ID to a unique, easily recognizable value.

7. Click Furnish a new private key and con�rm that the key type is JSON.

8. Click Create.

The private key �le is downloaded to your machine. You can move it to another location. Keep the key �le secure.

Use the following commands to set environment variables for database access. These environment variables are used for

local testing.

https://console.cloud.google.com/iam-admin/serviceaccounts/

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 7/13

1. This application is represented in a single Kubernetes con�guration, called polls. In polls.yaml replace <your-

project-id> with your Google Cloud project ID.

2. Run the following command and note the value of connectionName:

3. In the polls.yaml �le, replace <your-cloudsql-connection-string> with the connectionName value.

1. To run the Django app on your local computer, set up a Python development environment (/python/setup), including

Python, pip, and virtualenv.

2. Create an isolated Python environment and install dependencies. If your Python 3 installation has a different name, use

that in the �rst command:

3. Run the Django migrations to set up your models:

4. Start a local web server:

5. In your browser, go to http://localhost:8000 (http://localhost:8000).

You see a page with the following text: "Hello, world. You're at the polls index." The Django web server running on your

computer delivers the sample app pages.

6. Press Control+C to stop the local web server.

https://cloud.google.com/python/setup
http://localhost:8000/

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 8/13

1. Create a superuser. You need to specify a username and password.

2. Run the main program:

3. In your browser, go to http://localhost:8000/admin (http://localhost:8000/admin).

4. Log in to the admin site using the username and password you used when you ran createsuperuser.

When the app is deployed to Google Cloud, it uses the Gunicorn server. Gunicorn doesn't serve static content, so the app uses

Cloud Storage to serve static content.

1. Create a Cloud Storage bucket and make it publicly readable. Replace [YOUR_GCS_BUCKET] with a bucket name of your

choice. For example, you could use your project ID as a bucket name.

2. Gather all the static content locally into one folder:

3. Upload the static content to Cloud Storage:

4. In mysite/settings.py, set the value of STATIC_URL to the following URL, replacing [YOUR_GCS_BUCKET] with your bucket

name:

http://localhost:8000/admin

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 9/13

1. To initialize GKE, go to the Clusters page.

Go to the Clusters page (https://console.cloud.google.com/kubernetes/list)

When you use GKE for the �rst time in a project, you need to wait for the "Kubernetes Engine is getting ready. This may

take a minute or more" message to disappear.

2. Create a GKE cluster:

Did you get the error: "Project [PROJECT_ID] is not fully initialized with the default service accounts." (#create-cluster)?

3. After the cluster is created, use the kubectl command-line tool, which is integrated with the gcloud tool, to interact with

your GKE cluster. Because gcloud and kubectl are separate tools, make sure kubectl is con�gured to interact with the

right cluster.

1. You need several secrets (https://kubernetes.io/docs/concepts/con�guration/secret/) to enable your GKE app to connect with

your Cloud SQL instance. One is required for instance-level access (connection), while the other two are required for

database access. For more information about the two levels of access control, see Instance access control

 (/sql/docs/mysql/instance-access-control).

a. To create the secret for instance-level access, provide the location ([PATH_TO_CREDENTIAL_FILE]) of the JSON

service account key you downloaded when you created your service account (see Creating a service account

 (#creating_a_service_account)):

b. To create the secrets for database access, use the SQL [PROXY_USERNAME] and [PASSWORD] de�ned in step 2 of

Initializing your Cloud SQL instance (#initializing_your_cloud_sql_instance):

2. Retrieve the public Docker image for the Cloud SQL proxy.

https://console.cloud.google.com/kubernetes/list
https://kubernetes.io/docs/concepts/configuration/secret/
https://cloud.google.com/sql/docs/mysql/instance-access-control

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 10/13

3. Build a Docker image, replacing <your-project-id> with your project ID.

4. Con�gure Docker to use gcloud as a credential helper, so that you can push the image to Container Registry

 (/container-registry/):

5. Push the Docker image. Replace <your-project-id> with your project ID.

Note: This command requires write access to Cloud Storage. If you run this tutorial on a Compute Engine instance, your access to Cloud

Storage might be read-only. To get write access, create a service account

 (https://console.cloud.google.com/project/_/iam-admin/serviceaccounts) and use the service account to authenticate

 (/sdk/gcloud/reference/auth/activate-service-account) on your instance.

6. Create the GKE resource:

After the resources are created, there are three polls pods on the cluster. Check the status of your pods:

Wait a few minutes for the pod statuses to display as Running. If the pods aren't ready or if you see restarts, you can get the

logs for a particular pod to �gure out the issue. [YOUR-POD-ID] is a part of the output returned by the previous kubectl get

pods command.

https://cloud.google.com/container-registry/
https://console.cloud.google.com/project/_/iam-admin/serviceaccounts
https://cloud.google.com/sdk/gcloud/reference/auth/activate-service-account

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 11/13

kubernetes_engine/django_tutorial/mysite/settings.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/mysite/settings.py)

GitHub (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/mysite/settings.py)

kubernetes_engine/django_tutorial/polls.yaml
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/polls.yaml)

iew on GitHub (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/polls.yaml)

After the pods are ready, you can get the public IP address of the load balancer:

Go to the EXTERNAL-IP address in your browser to see the Django basic landing page and access the admin console.

The Django sample app was created using the standard Django tooling. These commands create the project and the polls

app:

The settings.py contains the con�guration for your SQL database:

The polls.yaml �le speci�es two Kubernetes resources. The �rst is the Service (http://kubernetes.io/docs/user-guide/services/),

which de�nes a consistent name and private IP address for the Django web app. The second is an HTTP load balancer

 (/kubernetes-engine/docs/load-balancer) with a public-facing external IP address.

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/mysite/settings.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/mysite/settings.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/polls.yaml
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/polls.yaml
http://kubernetes.io/docs/user-guide/services/
https://cloud.google.com/kubernetes-engine/docs/load-balancer

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 12/13

kubernetes_engine/django_tutorial/polls.yaml
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/polls.yaml)

iew on GitHub (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/polls.yaml)

The service provides a network name and IP address, and GKE pods run the app's code behind the service. The polls.yaml

�le speci�es a deployment (http://kubernetes.io/docs/user-guide/deployments/) that provides declarative updates for GKE pods.

The service directs tra�c to the deployment by matching the service's selector to the deployment's label. In this case, the

selector polls is matched to the label polls.

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/polls.yaml
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/kubernetes_engine/django_tutorial/polls.yaml
http://kubernetes.io/docs/user-guide/deployments/

1/25/2020 Running Django on Google Kubernetes Engine | Python | Google Cloud

https://cloud.google.com/python/django/kubernetes-engine/ 13/13

