
1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 1/10

Python Guides

Many apps need session handling for authentication and user preferences. The Flask
framework (http://�ask.pocoo.org/) comes with a memory-based implementation to perform
this function. However, this implementation is unsuitable for an app that can be served from
multiple instances, because the session that is recorded in one instance might differ from
other instances. This tutorial shows how to handle sessions on App Engine
 (https://cloud.google.com/appengine/docs/standard/).

Objectives

Write the app.

Run the app locally.

Deploy the app on App Engine.

Costs

This tutorial uses the following billable components of Google Cloud:

App Engine (https://cloud.google.com/appengine/pricing)

Firestore (https://cloud.google.com/�restore/pricing)

To generate a cost estimate based on your projected usage, use the pricing calculator
 (https://cloud.google.com/products/calculator). New Google Cloud users might be eligible for a free
trial (https://cloud.google.com/free-trial).

 (https://cloud.google.com/python/)

Handling sessions with Firestore

https://cloud.google.com/python/
https://cloud.google.com/docs/overview/
http://flask.pocoo.org/
https://cloud.google.com/appengine/docs/standard/
https://cloud.google.com/appengine/pricing
https://cloud.google.com/firestore/pricing
https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 2/10

When you �nish this tutorial, you can avoid continued billing by deleting the resources you
created. For more information, see Cleaning up (#clean-up).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Enable the Firestore API.

ENABLE THE API (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=FIRESTORE.

5. Install and initialize the Cloud SDK (https://cloud.google.com/sdk/docs/).

6. Install Python, pip, and virtualenv on your system. For instructions, see Setting up a
Python development environment (https://cloud.google.com/python/setup) for Google Cloud.

Se�ing up the project

1. In your terminal window, start in a directory of your choosing and create a new directory
named sessions. All of the code for this tutorial is inside the sessions directory.

2. Change into the sessions directory:

3. Create the requirements.txt with the following contents:

cd sessions

https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=firestore.googleapis.com
https://cloud.google.com/sdk/docs/
https://cloud.google.com/python/setup

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 3/10

sessions/requirements.txt
 (https://github.com/GoogleCloudPlatform/getting-started-
python/blob/master/sessions/requirements.txt)

GOOGLECLOUDPLATFORM/GETTING-STARTED-PYTHON/BLOB/MASTER/SESSIONS/REQUIREMENTS.TXT)

4. Install the dependencies:

At the end of this tutorial, the �nal �le structure is similar to the following:

Writing the web app

This app displays greetings in different languages for every user. Returning users are always
greeted in the same language.

google-cloud-firestore==1.6.0
flask==1.1.1

pip install -r requirements.txt

sessions
├── app.yaml
├── main.py
└── requirements.txt

https://github.com/GoogleCloudPlatform/getting-started-python/blob/master/sessions/requirements.txt
https://github.com/GoogleCloudPlatform/getting-started-python/blob/master/sessions/requirements.txt

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 4/10

sessions/main.py
 (https://github.com/GoogleCloudPlatform/getting-started-python/blob/master/sessions/main.py)

THUB.COM/GOOGLECLOUDPLATFORM/GETTING-STARTED-PYTHON/BLOB/MASTER/SESSIONS/MAIN.PY)

Before your app can store preferences for a user, you need a way to store information about the
current user in a session. This sample app uses Firestore to store session data.

In your terminal window, create a �le called main.py with the following content:

import random
from uuid import uuid4

from flask import Flask, make_response, request
from google.cloud import firestore

app = Flask(__name__)
db = firestore.Client()
sessions = db.collection('sessions')
greetings = [
 'Hello World',
 'Hallo Welt',
 'Ciao Mondo',
 'Salut le Monde',
 'Hola Mundo',
]

@firestore.transactional
def get_session_data(transaction, session_id):
 """ Looks up (or creates) the session with the given session_id.
 Creates a random session_id if none is provided. Increments
 the number of views in this session. Updates are done in a
 transaction to make sure no saved increments are overwritten.
 """
 if session_id is None:
 session_id = str(uuid4()) # Random, unique identifier

 doc_ref = sessions.document(document_id=session_id)
 doc = doc_ref.get(transaction=transaction)
 if doc.exists:
 session = doc.to_dict()
 else:
 session = {

https://github.com/GoogleCloudPlatform/getting-started-python/blob/master/sessions/main.py
https://github.com/GoogleCloudPlatform/getting-started-python/blob/master/sessions/main.py

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 5/10

The following diagram illustrates how Firestore handles sessions for the App Engine app.

 'greeting': random.choice(greetings),
 'views': 0
 }

 session['views'] += 1 # This counts as a view
 transaction.set(doc_ref, session)

 session['session_id'] = session_id
 return session

@app.route('/', methods=['GET'])
def home():
 template = '<body>{} views for "{}"</body>'

 transaction = db.transaction()
 session = get_session_data(transaction, request.cookies.get('session_id'))

 resp = make_response(template.format(
 session['views'],
 session['greeting']
)
)
 resp.set_cookie('session_id', session['session_id'], httponly=True)
 return resp

if __name__ == '__main__':
 app.run(host='127.0.0.1', port=8080)

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 6/10

After you've set app.use(session), every request has a req.session property that you can use
to identify recurring users. The session data is stored in Firestore.

Deleting sessions

You can delete session data (https://cloud.google.com/�restore/docs/using-console#delete_data) or
implement an automated deletion strategy. If you use storage solutions for sessions such as
Memcache or Redis, expired sessions are automatically deleted.

Running locally

1. In your terminal window, install the Gunicorn HTTP server (https://gunicorn.org/):

2. Run the Gunicorn HTTP server:

pip install gunicorn

https://cloud.google.com/firestore/docs/using-console#delete_data
https://gunicorn.org/

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 7/10

sessions/app.yaml
 (https://github.com/GoogleCloudPlatform/getting-started-
python/blob/master/sessions/app.yaml)

3. View the app in your web browser:

In the Cloud Shell toolbar, click Web preview and select Preview on port 8080.

You see one of �ve greetings: "Hello World", "Hallo Welt", "Hola mundo", "Salut le Monde",
or "Ciao Mondo." The language changes if you open the page in a different browser or in
incognito mode. You can see and edit the session data in the Google Cloud Console
 (https://console.cloud.google.com/�restore/).

4. To stop the HTTP server, in your terminal window, press Control+C.

Deploying and running on App Engine

You can use the App Engine standard environment
 (https://cloud.google.com/appengine/docs/standard/) to build and deploy an app that runs reliably
under heavy load and with large amounts of data.

This tutorial uses the App Engine standard environment to deploy the server.

1. In your terminal window, create an app.yaml �le and copy the following:

gunicorn -b :8080 main:app

CLOUD SHELL LOCAL MACHINE

https://github.com/GoogleCloudPlatform/getting-started-python/blob/master/sessions/app.yaml
https://console.cloud.google.com/firestore/
https://cloud.google.com/appengine/docs/standard/

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 8/10

HUB.COM/GOOGLECLOUDPLATFORM/GETTING-STARTED-PYTHON/BLOB/MASTER/SESSIONS/APP.YAML)

2. Deploy the app on App Engine:

3. View the live app at https://your-project-id.appspot.com:

Where your-project-id is your Google Cloud project ID.

The greeting is now delivered by a web server running on an App Engine instance.

Debugging the app

If you cannot connect to your App Engine app, check the following:

1. Check that the gcloud deploy commands successfully completed and didn't output any
errors. If there were errors (for example, message=Build failed), �x them, and try
deploying the App Engine app (#deploying_the_web_app) again.

2. In the Cloud Console, go to the Logs Viewer page.

GO TO LOGS VIEWER PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/LOGS/VIEWER)

a. In the Recently selected resources drop-down list, click App Engine Application,
and then click All module_id. You see a list of requests from when you visited your
app. If you don't see a list of requests, con�rm you selected All module_id from the
drop-down list. If you see error messages printed to the Cloud Console, check that
your app's code matches the code in the section about writing the web app
 (#writing_the_web_app).

b. Make sure that the Firestore API is enabled.

Cleaning up

runtime: python37

gcloud app deploy

gcloud app browse

https://github.com/GoogleCloudPlatform/getting-started-python/blob/master/sessions/app.yaml
https://console.cloud.google.com/logs/viewer

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 9/10

Delete the project

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

Delete the App Engine instance

1. In the Cloud Console, go to the Versions page for App Engine.

GO TO THE VERSIONS PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APPENGINE/VERSIONS)

2. Select the checkbox for the non-default app version you want to delete.

Note: The only way you can delete the default version of your App Engine app is by deleting your

project. However, you can stop the default version in the Cloud Console

 (https://console.cloud.google.com/appengine/versions). This action shuts down all instances

associated with the version. You can restart these instances later if needed.

In the App Engine standard environment, you can stop the default version only if your app has manual

or basic scaling.

3. Click Delete to delete the app version.

https://console.cloud.google.com/iam-admin/projects
https://console.cloud.google.com/appengine/versions
https://console.cloud.google.com/appengine/versions

1/23/2020 Handling sessions with Firestore | Python | Google Cloud

https://cloud.google.com/python/getting-started/session-handling-with-firestore 10/10

What's next

Try additional Cloud Functions tutorials (https://cloud.google.com/functions/docs/tutorials/).

Learn more about App Engine (https://cloud.google.com/appengine/docs/).

Try Cloud Run (https://cloud.google.com/run/docs/quickstarts/prebuilt-deploy), which lets you
run stateless containers on a fully managed environment or in your own Google
Kubernetes Engine cluster.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated January 5, 2020.

https://cloud.google.com/functions/docs/tutorials/
https://cloud.google.com/appengine/docs/
https://cloud.google.com/run/docs/quickstarts/prebuilt-deploy
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

