
1/23/2020 Logging app events with Python | Python | Google Cloud

https://cloud.google.com/python/monitor-and-debug/logging-application-events 1/6

Python Guides

This part of the Python Bookshelf app tutorial shows how an app can incorporate detailed
logging to help with detecting, debugging, and monitoring potential issues. Logging app
events can help you identify issues and solve problems, both during development and after
your app is in production.

This page is part of a multipage tutorial. To start from the beginning and read the setup
instructions, go to Python Bookshelf app
 (https://cloud.google.com/python/getting-started/tutorial-app).

You can use the Python standard logging handlers introduced in Understanding the code
 (#understanding_the_code) on the App Engine �exible environment, Compute Engine, or Google
Kubernetes Engine (GKE).

Con�guring se�ings

This section uses code in the 5-logging directory. Edit the �les and run commands in this
directory.

1. Open the config.py �le for editing and replace the following values:

Set the value of [PROJECT_ID] to your project ID, which is visible in the Cloud
Console.

Set the value of [DATA_BACKEND] to the same value you used during the Using
structured data (https://cloud.google.com/python/getting-started/using-structured-data)

tutorial.

If you are using Cloud SQL or MongoDB, set the values under the Cloud SQL or
Mongo section to the same values you used during the Using structured data step.

 (https://cloud.google.com/python/)

Logging app events with Python

https://cloud.google.com/python/
https://cloud.google.com/docs/overview/
https://cloud.google.com/python/getting-started/tutorial-app
https://cloud.google.com/python/getting-started/using-structured-data

1/23/2020 Logging app events with Python | Python | Google Cloud

https://cloud.google.com/python/monitor-and-debug/logging-application-events 2/6

Set the value of [CLOUD_STORAGE_BUCKET] to your Cloud Storage bucket name.

Under the OAuth2 configuration section, set the values of
[GOOGLE_OAUTH2_CLIENT_ID] and [GOOGLE_OAUTH2_CLIENT_SECRET] to the
application client ID and secret that you created previously.

2. Save and close the config.py �le.

If you are using Cloud SQL:

1. Open the app.yaml �le for editing.

2. Set the value of cloudsql-instance to the same value used for
[CLOUDSQL_CONNECTION_NAME] in the config.py �le. Use the format
project:region:cloudsql-instance. Uncomment this entire line.

3. Save and close the app.yaml �le.

Installing dependencies

To create a virtual environment and install dependencies, use the following commands:

Running the app on your local machine

1. Start a local web server:

2. In your browser, enter the following address:

Press Control+C to exit the worker and then the local web server.

LINUX/MACOS WINDOWS

virtualenv -p python3 env
source env/bin/activate
pip install -r requirements.txt

 

python main.py  

http://localhost:8080  

1/23/2020 Logging app events with Python | Python | Google Cloud

https://cloud.google.com/python/monitor-and-debug/logging-application-events 3/6

Deploying the app to the App Engine �exible environment

1. Deploy the sample app:

2. In your browser, enter the following address. Replace [YOUR_PROJECT_ID] with your Google
Cloud project ID:

If you update your app, you deploy the updated version by entering the same command that
you used to deploy the app. The deployment creates a new version of your app and promotes it
to the default version. The earlier versions of your app remain, as do their associated virtual
machine (VM) instances. All of these app versions and VM instances are billable resources. To
reduce costs, delete the non-default versions of your app.

To delete an app version:

1. In the Cloud Console, go to the Versions page for App Engine.

GO TO THE VERSIONS PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APPENGINE/VERSIONS)

2. Select the checkbox for the non-default app version you want to delete.

Note: The only way you can delete the default version of your App Engine app is by deleting your

project. However, you can stop the default version in the Cloud Console

 (https://console.cloud.google.com/appengine/versions). This action shuts down all instances

associated with the version. You can restart these instances later if needed.

In the App Engine standard environment, you can stop the default version only if your app has manual

or basic scaling.

3. Click Delete to delete the app version.

For more information about cleaning up billable resources, see the Cleaning up
 (https://cloud.google.com/python/getting-started/using-pub-sub#clean-up) section in the �nal step of
this tutorial.

gcloud app deploy  

https://[YOUR_PROJECT_ID].appspot.com  

https://console.cloud.google.com/appengine/versions
https://console.cloud.google.com/appengine/versions
https://cloud.google.com/python/getting-started/using-pub-sub#clean-up

1/23/2020 Logging app events with Python | Python | Google Cloud

https://cloud.google.com/python/monitor-and-debug/logging-application-events 4/6

Understanding the code

After you deploy an app, it's important to understand how well the app is working. Google Cloud
provides logging and monitoring tools in the Google Cloud Console that show detailed activity
within your app, helping you quickly identify critical issues or trends.

The Bookshelf sample app uses Python's Logging facility for Python
 (https://docs.python.org/2/library/logging.html) to manage logging.

The app can also log important events from anywhere by using the following code.

When the sample app is running in the App Engine �exible environment, anything logged to
stderr and stdout is automatically collected by Stackdriver Logging. Use the logs viewer in the
Cloud Console to view, search, and export log content.

GO TO THE LOGS VIEWER IN THE CLOUD CONSOLE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECT/_

Viewing logs

While the sample app runs, it collects logging data. You can analyze this data by using the log
monitoring tools in the Cloud Console.

GO TO THE LOG MONITORING TOOLS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECT/_/LOGS)

The following image shows logged events in the Cloud Console.

logging.info("Something happened");
logging.error("Something bad happened");

 

https://docs.python.org/2/library/logging.html
https://console.cloud.google.com/project/_/logs
https://console.cloud.google.com/project/_/logs

1/23/2020 Logging app events with Python | Python | Google Cloud

https://cloud.google.com/python/monitor-and-debug/logging-application-events 5/6

5-logging/bookshelf/__init__.py
 (https://github.com/GoogleCloudPlatform/getting-started-
python/blob/504b3d550b551502cfe96f32542c31b232135eff/5-logging/bookshelf/__init__.py)

YTHON/BLOB/504B3D550B551502CFE96F32542C31B232135EFF/5-LOGGING/BOOKSHELF/__INIT__.PY)

For a more detailed analysis, you can stream or import the app's logs into BigQuery
 (https://cloud.google.com/logging/docs/install/logs_export) or export them to a Cloud Storage bucket
 (https://cloud.google.com/logging/docs/install/logs_export). You can use the Cloud Console to do
both.

Using Python logging handlers

By default, the log messages captured in stdout and stderr aren't captured with severity
metadata. If you query for log statements that contain WARN, the results set includes statements
that contain the string WARN, regardless of the severity of the logging call. However, if metadata
is correctly reported, you can use a metadata.severity >= WARN logging �lter to return only log
statements that are logged at WARN or higher.

The Cloud Client Libraries for Python (https://github.com/GoogleCloudPlatform/google-cloud-python)

include Python standard logging handlers (https://docs.python.org/2/library/logging.handlers.html),
that ensure that all logging statements are reported to Logging with the correct metadata. The
following code attaches the default Logging handlers, which vary depending on your
deployment environment, to the root logger. In the App Engine �exible environment, Logging
reports logs by using the fluentd agent that accompanies the runtime. For more information,
see the Python Stackdriver Logging API client library
 (https://pypi.python.org/pypi/google-cloud-logging).

https://github.com/GoogleCloudPlatform/getting-started-python/blob/504b3d550b551502cfe96f32542c31b232135eff/5-logging/bookshelf/__init__.py
https://github.com/GoogleCloudPlatform/getting-started-python/blob/504b3d550b551502cfe96f32542c31b232135eff/5-logging/bookshelf/__init__.py
https://cloud.google.com/logging/docs/install/logs_export
https://cloud.google.com/logging/docs/install/logs_export
https://github.com/GoogleCloudPlatform/google-cloud-python
https://docs.python.org/2/library/logging.handlers.html
https://pypi.python.org/pypi/google-cloud-logging

1/23/2020 Logging app events with Python | Python | Google Cloud

https://cloud.google.com/python/monitor-and-debug/logging-application-events 6/6

< PREV (HTTPS://CLOUD.GOOGLE.COM/PYTHON/MONITOR-AND-DEBUG/INDEX)

NEXT > (HTTPS://CLOUD.GOOGLE.COM/PYTHON/MONITOR-AND-DEBUG/UPTIME-ALERT)

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 5, 2019.

if not app.testing:
 client = google.cloud.logging.Client(app.config['PROJECT_ID'])
 # Attaches a Google Stackdriver logging handler to the root logger
 client.setup_logging(logging.INFO)

 

https://cloud.google.com/python/monitor-and-debug/index
https://cloud.google.com/python/monitor-and-debug/uptime-alert
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

