
1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 1/16

Ruby Guides

Many apps need to do background processing outside of the context of a web request. In this
sample, the Bookshelf app sends tasks to a separate background worker for execution. The
worker gathers information from the Google Books API (https://developers.google.com/books/)

and updates the book information in the database. This sample demonstrates how to set up
separate services in App Engine, how to run a worker process in the App Engine �exible
environment, and how to deal with lifecycle events.

This page is part of a multipage tutorial. To start from the beginning and read the setup
instructions, go to Ruby Bookshelf app (https://cloud.google.com/ruby/getting-started/tutorial-app).

Installing dependencies

Go to the getting-started-ruby/6-task-queueing directory, and enter the following command.

Creating a Pub/Sub topic and subscription

The Bookshelf app uses Pub/Sub (https://cloud.google.com/pubsub) for a background processing
queue of requests to get data from the Google Books API (https://developers.google.com/books/)

for a book added to the Bookshelf.

1. Create a new Pub/Sub topic using the following Cloud SDK command where
[YOUR_PUBSUB_TOPIC] represents your Pub/Sub topic name.

 (https://cloud.google.com/ruby/)

Using Pub/Sub with Ruby

bundle install 

https://cloud.google.com/ruby/
https://cloud.google.com/docs/overview/
https://developers.google.com/books/
https://cloud.google.com/ruby/getting-started/tutorial-app
https://cloud.google.com/pubsub
https://developers.google.com/books/

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 2/16

6-task-queueing/con�g/settings.example.yml
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/con�g/settings.example.yml)

LATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/CONFIG/SETTINGS.EXAMPLE.YML)

2. Create a new Pub/Sub subscription for the topic created in the previous step. Replace
[YOUR_PUBSUB_SUBSCRIPTION] with the name you want to give to this new Pub/Sub
subcritpion.

Con�guring se�ings

1. Copy the example settings �le.

2. Open the settings.yml �le for editing. Replace the [YOUR_PROJECT_ID] with your Google
Cloud project ID.

3. Set the other variables to the same values you used in the Authenticating users
 (https://cloud.google.com/ruby/getting-started/authenticate-users) part of this tutorial.

For example, suppose your web app's client ID is XYZCLIENTID and your client secret is
XYZCLIENTSECRET. Also suppose your project name is my-project, and your Cloud Storage
bucket name is my-bucket. Then the default section of your settings.yml �le would look
like this:

gcloud pubsub topics create [YOUR_PUBSUB_TOPIC] 

gcloud pubsub subscriptions create --topic [YOUR_PUBSUB_TOPIC] [YOUR_PUBSUB_SUB

cp config/settings.example.yml config/settings.yml 

default: &default
 project_id: [YOUR_PROJECT_ID]
 gcs_bucket: [YOUR_BUCKET_NAME]
 pubsub_topic: [YOUR_PUBSUB_TOPIC]
 pubsub_subscription: [YOUR_PUBSUB_SUBSCRIPTION]
 oauth2:
 client_id: [YOUR_CLIENT_ID]
 client_secret: [YOUR_CLIENT_SECRET]



https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/config/settings.example.yml
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/config/settings.example.yml
https://cloud.google.com/ruby/getting-started/authenticate-users

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 3/16

4. Copy the example database con�guration �le.

5. Con�gure the sample app to use the same database that you set up during the Using
structured data (https://cloud.google.com/ruby/getting-started/using-structured-data) part of
this tutorial.

Edit database.yml. Uncomment the lines in the Cloud SQL portion of the �le.

Replace [MYSQL_USER] and [MYSQL_PASS] with your Cloud SQL instance username
and password that you created previously.

Replace [MYSQL_DATABASE] with the name of the database that you created
previously.

Replace [YOUR_INSTANCE_CONNECTION_NAME] with the Instance Connection
Name of your Cloud SQL instance.

Note: You can retrieve the Cloud SQL instance connection name by running
gcloud beta sql instances describe [YOUR_INSTANCE_NAME].

default: &default
 project_id: my-project
 gcs_bucket: my-bucket
 pubsub_topic: your-pubsub-topic
 pubsub_subscription: your-pubsub-subscription
 oauth2:
 client_id: XYZCLIENTID
 client_secret: XYZCLIENTSECRET



cp config/database.example.yml config/database.yml 

CLOUD SQL POSTGRESQL DATASTORE

 mysql_settings: &mysql_settings
 adapter: mysql2
 encoding: utf8
 pool: 5
 timeout: 5000
 username: [MYSQL_USER]
 password: [MYSQL_PASS]
 database: [MYSQL_DATABASE]
 socket: /cloudsql/[YOUR_INSTANCE_CONNECTION_NAME]



https://cloud.google.com/ruby/getting-started/using-structured-data

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 4/16

Run migrations.

Running the app on your local machine

1. Start the local web server and two worker processes.

2. In your web browser, enter http://localhost:8080.

Now add some books to the Bookshelf. You can watch the workers update the book
information in the background.

The Foreman (http://ddollar.github.io/foreman/) RubyGem starts the Rails web server and runs
two worker processes.

The worker establishes a Pub/Sub subscription to listen for events. After the subscription
exists, events published to the topic are queued, even if there is no worker currently listening for
events. When a worker comes online, Pub/Sub delivers any queued events.

When you're ready to move forward, press Ctrl+C to exit the local web server and worker
processes.

Deploying the app to the App Engine �exible environment

1. Compile the JavaScript assets for production.

2. Deploy the worker.

3. Deploy the sample app.

bundle exec rake db:migrate 

bundle exec foreman start --formation web=1,worker=2 

RAILS_ENV=production bundle exec rake assets:precompile 

gcloud app deploy worker.yaml 

http://ddollar.github.io/foreman/

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 5/16

4. In your web browser, enter the following address.

If you update your app, you can deploy the updated version by entering the same command
you used to deploy the app the �rst time. The new deployment creates a new version
 (https://console.cloud.google.com/appengine/versions) of your app and promotes it to the default
version. The older versions of your app remain, as do their associated VM instances. Be aware
that all of these app versions and VM instances are billable resources.

You can reduce costs by deleting the non-default versions of your app.

To delete an app version:

1. In the Cloud Console, go to the Versions page for App Engine.

GO TO THE VERSIONS PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APPENGINE/VERSIONS)

2. Select the checkbox for the non-default app version you want to delete.

Note: The only way you can delete the default version of your App Engine app is by deleting your

project. However, you can stop the default version in the Cloud Console

 (https://console.cloud.google.com/appengine/versions). This action shuts down all instances

associated with the version. You can restart these instances later if needed.

In the App Engine standard environment, you can stop the default version only if your app has manual

or basic scaling.

3. Click Delete to delete the app version.

For complete information about cleaning up billable resources, see the Cleaning up
 (https://cloud.google.com/ruby/getting-started/using-pub-sub#clean-up) section in the �nal step of
this tutorial.

App structure

This diagram shows the app's components and how they �t together.

gcloud app deploy 

https://[YOUR_PROJECT_ID].appspot.com 

https://console.cloud.google.com/appengine/versions
https://console.cloud.google.com/appengine/versions
https://console.cloud.google.com/appengine/versions

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 6/16

6-task-queueing/app/models/book.rb
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/app/models/book.rb)

LECLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/APP/MODELS/BOOK.RB)

Understanding the code

This section walks you through the app's code and explains how it works.

Queue tasks

To gather information from the Google Books API (https://developers.google.com/books/) for
books added to the Bookshelf, the Book class adds a task to the queue.

The preceding code creates an Active Record callback
 (http://guides.rubyonrails.org/active_record_callbacks.html) and speci�es that after a book is created

and saved in the database, lookup_book_details is called. If the book is missing any
information, it adds the job, look up the book's details, to the queue.

LookupBookDetailsJob is an Active Job (http://guides.rubyonrails.org/active_job_basics.html) job.

The code passes self, referencing the book, to LookupBookDetailsJob.perform_later. This
adds a job to look up the book's details to the queue.

after_create :lookup_book_details

def lookup_book_details
 if [author, description, published_on, image_url].any? {|attr| attr.blank? }
 LookupBookDetailsJob.perform_later self
 end
end



https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app/models/book.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app/models/book.rb
https://developers.google.com/books/
http://guides.rubyonrails.org/active_record_callbacks.html
http://guides.rubyonrails.org/active_job_basics.html

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 7/16

6-task-queueing/con�g/application.rb
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/con�g/application.rb)

CLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/CONFIG/APPLICATION.RB)

6-task-queueing/lib/active_job/queue_adapters/pub_sub_queue_adapter.rb
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/lib/active_job/queue_adapters/pub_sub_queue_adapter.rb)

Y/BLOB/STEPS/6-TASK-QUEUEING/LIB/ACTIVE_JOB/QUEUE_ADAPTERS/PUB_SUB_QUEUE_ADAPTER.RB)

Pub/Sub Active Job backend

You can con�gure Active Job to use a custom backend
 (http://guides.rubyonrails.org/active_job_basics.html#backends). For example, use delayed_job
 (https://github.com/collectiveidea/delayed_job) or resque (https://github.com/resque/resque), to add

tasks to the queue. The Bookshelf sample app has its own custom backend, which is speci�ed
in the Application class.

An Active Job backend, which is also called an adapter, must provide an enqueue method. When
a job is enqueued using perform_later, the job is passed to the enqueue method of the
con�gured Active Job backend.

The sample app adds a job to the queue by creating a subscription to a Pub/Sub topic, and
then publishing the ID of a book to the topic. Once the subscription exists, messages are
queued even if there is no worker currently listening. When a worker comes online, Pub/Sub
delivers any queued events.

config.active_job.queue_adapter = :pub_sub_queue 

require "google/cloud/pubsub"

module ActiveJob
 module QueueAdapters
 class PubSubQueueAdapter

 def self.pubsub
 @pubsub ||= begin
 project_id = Rails.application.config.x.settings["project_id"]
 Google::Cloud::Pubsub.new project_id: project_id
 end
 end



https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/config/application.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/config/application.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/lib/active_job/queue_adapters/pub_sub_queue_adapter.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/lib/active_job/queue_adapters/pub_sub_queue_adapter.rb
http://guides.rubyonrails.org/active_job_basics.html#backends
https://github.com/collectiveidea/delayed_job
https://github.com/resque/resque

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 8/16

6-task-queueing/Gem�le
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Gem�le)

B.COM/GOOGLECLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/GEMFILE)

The preceding code uses the google-cloud-pubsub
 (https://googleapis.dev/ruby/google-cloud-pubsub/latest/Google/Cloud/PubSub.html) RubyGem to

interact with Pub/Sub. The Cloud client library is an idiomatic Ruby client for interacting with
Google Cloud services.

To process books added to a queue, a Pub/Sub subscription
 (https://cloud.google.com/pubsub/subscriber) listens for messages published to the
lookup_book_details_queue topic. This is covered in the worker (#the_worker) section.

Books API

The sample app uses the Google API client
 (https://github.com/google/google-api-ruby-client/tree/v0.8.6) RubyGem to look up book details from

the Books API.

 def self.pubsub_topic
 @pubsub_topic ||= Rails.application.config.x.settings["pubsub_topic"]
 end

 def self.pubsub_subscription
 @pubsub_subscription ||= Rails.application.config.x.settings["pubsub_subscri
 end

 def self.enqueue job
 Rails.logger.info "[PubSubQueueAdapter] enqueue job #{job.inspect}"

 book = job.arguments.first

 topic = pubsub.topic pubsub_topic

 topic.publish book.id.to_s
 end

gem "google-cloud-pubsub", "~> 0.30" 

https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Gemfile
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Gemfile
https://googleapis.dev/ruby/google-cloud-pubsub/latest/Google/Cloud/PubSub.html
https://cloud.google.com/pubsub/subscriber
https://github.com/google/google-api-ruby-client/tree/v0.8.6

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 9/16

6-task-queueing/Gem�le
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Gem�le)

B.COM/GOOGLECLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/GEMFILE)

6-task-queueing/app/jobs/lookup_book_details_job.rb
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/app/jobs/lookup_book_details_job.rb)

GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/APP/JOBS/LOOKUP_BOOK_DETAILS_JOB.RB)

When a job runs, the LookupBookDetailsJob.perform method retrieves a list of books, based on
a book title, from the Books API.

gem "google-api-client", "~> 0.19" 

require "google/apis/books_v1"

class LookupBookDetailsJob < ActiveJob::Base
 queue_as :default

 def perform book
 Rails.logger.info "[BookService] Lookup details for book" +
 "#{book.id} #{book.title.inspect}"

 # Create Book API Client
 book_service = Google::Apis::BooksV1::BooksService.new

 # Lookup a list of relevant books based on the provided book title.
 book_service.list_volumes(book.title, order_by: "relevance") do |results, error|
 # Error ocurred soft-failure
 if error
 Rails.logger.error "[BookService] #{error.inspect}"
 break
 end

 # Book was not found
 if results.total_items.zero?
 Rails.logger.info "[BookService] #{book.title} was not found."
 break
 end

 # List of relevant books
 volumes = results.items



https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Gemfile
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Gemfile
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app/jobs/lookup_book_details_job.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app/jobs/lookup_book_details_job.rb

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 10/16

6-task-queueing/app/jobs/lookup_book_details_job.rb
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/app/jobs/lookup_book_details_job.rb)

GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/APP/JOBS/LOOKUP_BOOK_DETAILS_JOB.RB)

6-task-queueing/app/jobs/lookup_book_details_job.rb
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/app/jobs/lookup_book_details_job.rb)

GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/APP/JOBS/LOOKUP_BOOK_DETAILS_JOB.RB)

If a book volume result includes a title, author, and book cover image, then it is selected as the
best match. Otherwise the �rst result is used.

If any relevant volume is found, the book details are updated and saved in the database.

The worker

To provide the best results, find the first returned book that
includes title and author information as well as a book cover image.
best_match = volumes.find {|volume|
 info = volume.volume_info
 info.title && info.authors && info.image_links.try(:thumbnail)
}

volume = best_match || volumes.first



if volume
 info = volume.volume_info
 images = info.image_links

 publication_date = info.published_date
 publication_date = "#{$1}-01-01" if publication_date =~ /^(\d{4})$/
 publication_date = Date.parse publication_date

 book.author = info.authors.join(", ") unless book.author.present?
 book.published_on = publication_date unless book.published_on.present?
 book.description = info.description unless book.description.present?
 book.image_url = images.try(:thumbnail) unless book.image_url.
 present?
 book.save
end



https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app/jobs/lookup_book_details_job.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app/jobs/lookup_book_details_job.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app/jobs/lookup_book_details_job.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app/jobs/lookup_book_details_job.rb

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 11/16

6-task-queueing/lib/tasks/run_worker.rake
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/lib/tasks/run_worker.rake)

DPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/LIB/TASKS/RUN_WORKER.RAKE)

6-task-queueing/lib/active_job/queue_adapters/pub_sub_queue_adapter.rb
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/lib/active_job/queue_adapters/pub_sub_queue_adapter.rb)

Y/BLOB/STEPS/6-TASK-QUEUEING/LIB/ACTIVE_JOB/QUEUE_ADAPTERS/PUB_SUB_QUEUE_ADAPTER.RB)

A worker process handles book lookup jobs. To run the worker, you can run the following
command, as speci�ed in Procfile.

The run_worker rake task calls PubSubQueueAdapter to start a worker.

When the worker runs, it listens for messages on the Pub/Sub subscription to the
lookup_book_details_queue topic de�ned in your config/settings.yml �le. When a message
is received, the associated book is retrieved from the database and the LookupBookDetailsJob
runs immediately to update the book.

bundle exec rake run_worker 

desc "Run task queue worker"
task run_worker: :environment do
 ActiveJob::QueueAdapters::PubSubQueueAdapter.run_worker!
end



def self.run_worker!
 Rails.logger.info "Running worker to lookup book details"

 topic = pubsub.topic pubsub_topic
 subscription = topic.subscription pubsub_subscription

 subscriber = subscription.listen do |message|
 message.acknowledge!

 Rails.logger.info "Book lookup request (#{message.data})"

 book_id = message.data.to_i
 book = Book.find_by_id book_id



https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/lib/tasks/run_worker.rake
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/lib/tasks/run_worker.rake
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/lib/active_job/queue_adapters/pub_sub_queue_adapter.rb
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/lib/active_job/queue_adapters/pub_sub_queue_adapter.rb

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 12/16

6-task-queueing/health_check.ru
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/health_check.ru)

OOGLECLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/HEALTH_CHECK.RU)

6-task-queueing/Proc�le
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Proc�le)

Running on Google Cloud

The worker is deployed as a separate module within the same app. App Engine apps can have
multiple, independent services. This means that you can independently deploy, con�gure, scale,
and update pieces of your app. The frontend is deployed to the default module, and the worker
is deployed to the worker module.

Even though the worker doesn't serve any web requests to users, or even run a web app, we
strongly recommend that you provide an HTTP health check when running in the App Engine
�exible environment to ensure that the service is running and responsive. It is, however, possible
to disable health checking.

To provide a health check, the worker starts two processes instead of one. The �rst process is
worker and the second process is health_check, which runs a simple Rack app that responds to
HTTP requests with a successful response for health checks.

The app uses Foreman (http://ddollar.github.io/foreman/) to manage multiple processes. The
processes are con�gured in Procfile.

 LookupBookDetailsJob.perform_now book if book
 end

 # Start background threads that will call block passed to listen.
 subscriber.start

 # Fade into a deep sleep as worker will run indefinitely
 sleep
end

Respond to HTTP requests with non-500 error code
run lambda {|env| [200, {"Content-Type" => "text/plain"}, ["ok"]] }



https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/health_check.ru
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/health_check.ru
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Procfile
http://ddollar.github.io/foreman/

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 13/16

.COM/GOOGLECLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/PROCFILE)

6-task-queueing/app.yaml
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app.yaml)

.COM/GOOGLECLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/APP.YAML)

Foreman is now used as the entrypoint for the docker container. This is speci�ed in the
app.yaml and worker.yaml �les.

Notice that Procfile contains an entry for the web frontend to run the Bookshelf Rails app as
well. Because the default (frontend) and worker services share the same codebase, the
FORMATION environment variable controls which processes are started. The following diagram
contrasts the single module deployment on the left with the multi-module deployment on the
right.

The environment variables are set by the app.yaml and worker.yaml �les.

web: bundle exec rackup -p 8080
worker: bundle exec rake run_worker
health_check: bundle exec rackup -p 8080 health_check.ru



entrypoint: bundle exec foreman start --formation "$FORMATION" 

https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/Procfile
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app.yaml
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app.yaml

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 14/16

6-task-queueing/app.yaml
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app.yaml)

.COM/GOOGLECLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/APP.YAML)

6-task-queueing/worker.yaml
 (https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-
queueing/worker.yaml)

M/GOOGLECLOUDPLATFORM/GETTING-STARTED-RUBY/BLOB/STEPS/6-TASK-QUEUEING/WORKER.YAML)

The worker is a separate module, so it needs its own YAML con�guration �le.

This con�guration is similar to the app.yaml �le that is used for the frontend; the key
differences are the module: worker setting, and the FORMATION environment variable, which
con�gures Foreman to run �ve workers and the frontend for the health check instead of the
Bookshelf web app.

Cleaning up

To avoid incurring charges to your Google Cloud Platform account for the resources used in
this tutorial:

Delete the project

The easiest way to eliminate billing is to delete the project that you created for the tutorial.

To delete the project:

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

env_variables:
 FORMATION: web=1



env_variables:
 FORMATION: worker=5,health_check=1



https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app.yaml
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/app.yaml
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/worker.yaml
https://github.com/GoogleCloudPlatform/getting-started-ruby/blob/steps/6-task-queueing/worker.yaml

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 15/16

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

Delete non-default versions of your app

If you don't want to delete your project, you can reduce costs by deleting the non-default
versions of your app.

To delete an app version:

1. In the Cloud Console, go to the Versions page for App Engine.

GO TO THE VERSIONS PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APPENGINE/VERSIONS)

2. Select the checkbox for the non-default app version you want to delete.

Note: The only way you can delete the default version of your App Engine app is by deleting your

project. However, you can stop the default version in the Cloud Console

 (https://console.cloud.google.com/appengine/versions). This action shuts down all instances

associated with the version. You can restart these instances later if needed.

In the App Engine standard environment, you can stop the default version only if your app has manual

or basic scaling.

3. Click Delete to delete the app version.

Delete your Cloud SQL instance

https://console.cloud.google.com/iam-admin/projects
https://console.cloud.google.com/appengine/versions
https://console.cloud.google.com/appengine/versions

1/9/2020 Using Pub/Sub with Ruby | Ruby | Google Cloud

https://cloud.google.com/ruby/getting-started/using-pub-sub 16/16

< PREV (HTTPS://CLOUD.GOOGLE.COM/RUBY/GETTING-STARTED/LOGGING-APPLICATION-EVENTS)

To delete a Cloud SQL instance:

1. In the Cloud Console, go to the SQL Instances page.

GO TO THE SQL INSTANCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/SQL/INSTANCES)

2. Click the name of the SQL instance you want to delete.

3. Click Delete  to delete the instance.

Delete your Cloud Storage bucket

To delete a Cloud Storage bucket:

1. In the Cloud Console, go to the Cloud Storage Browser page.

GO TO THE CLOUD STORAGE BROWSER PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/STORAGE/

2. Click the checkbox for the bucket you want to delete.

3. Click Delete  to delete the bucket.

What's next

Learn how to run the Ruby Bookshelf sample app on Compute Engine
 (https://cloud.google.com/ruby/getting-started/run-on-compute-engine).

Try out other Google Cloud Platform features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

NEXT >

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated November 19, 2019.

https://cloud.google.com/ruby/getting-started/logging-application-events
https://console.cloud.google.com/sql/instances
https://console.cloud.google.com/storage/browser
https://cloud.google.com/ruby/getting-started/run-on-compute-engine
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

