
1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 1/16



Ruby Guides

Get started developing Ruby on Rails apps that run on the App Engine �exible environment
 (https://cloud.google.com/appengine/docs/�exible/). The apps you create run on the same
infrastructure that powers all of Google's products, so you can be con�dent that they can scale
to serve all of your users, whether there are a few or millions of them.

This tutorial assumes you are familiar with Rails web development. It walks you through setting
up Cloud SQLfor MySQL (https://cloud.google.com/sql/docs/mysql/) with a new Rails app. You can
also use this tutorial as a reference for con�guring existing Rails apps to use Cloud SQL for
MySQL.

This tutorial requires Ruby 2.3.4 (https://www.ruby-lang.org/) or newer.

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

 (https://cloud.google.com/ruby/)

Using Cloud SQL for MySQL with Rails 5

https://cloud.google.com/ruby/
https://cloud.google.com/docs/overview/
https://cloud.google.com/appengine/docs/flexible/
https://cloud.google.com/sql/docs/mysql/
https://www.ruby-lang.org/
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 2/16

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Install and initialize the Cloud SDK (https://cloud.google.com/sdk/docs/).

5. Enable the Datastore, Pub/Sub, Cloud Storage JSON, Stackdriver Logging, and Google+
APIs.

ENABLE THE APIS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=DATASTOR

Preparing Cloud SQL for a MySQL instance

To set up Cloud SQL for a MySQL instance for this tutorial:

1. Create a Second Generation instance
 (https://cloud.google.com/sql/docs/mysql/create-instance). In this tutorial the name for the
instance is rails-cloudsql-instance.

2. Create a database in the instance
 (https://cloud.google.com/sql/docs/mysql/create-manage-databases). In this tutorial the name
for the production database is cat_list_production.

3. Set a root user password for the instance
 (https://cloud.google.com/sql/docs/mysql/create-manage-users#user-root).

Se�ing up your local environment for Rails

To set up your local environment for this tutorial:

1. Install Ruby (https://www.ruby-lang.org/) version 2.3.4 or newer.

2. Install the Rails 5 (http://guides.rubyonrails.org/) gem.

3. Install the Bundler (https://bundler.io/) gem.

Note: Alternatively, you can use Cloud Shell (https://console.cloud.google.com/?cloudshell=true), which

comes with Ruby, Rails, Bundler, and the Cloud SDK already installed.

For additional information on installing Rails and its dependencies, see the o�cial Getting
started with Rails (http://guides.rubyonrails.org/getting_started.html) guide.

https://cloud.google.com/billing/docs/how-to/modify-project
https://cloud.google.com/sdk/docs/
https://console.cloud.google.com/flows/enableapi?apiid=datastore.googleapis.com,pubsub,storage_api,logging,plus
https://cloud.google.com/sql/docs/mysql/create-instance
https://cloud.google.com/sql/docs/mysql/create-manage-databases
https://cloud.google.com/sql/docs/mysql/create-manage-users#user-root
https://www.ruby-lang.org/
http://guides.rubyonrails.org/
https://bundler.io/
https://console.cloud.google.com/?cloudshell=true
http://guides.rubyonrails.org/getting_started.html

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 3/16

After you complete the prerequisites, you can create and deploy a Rails app using Cloud SQL
for MySQL. The following sections guide you through con�guring, connecting to Cloud SQL for
MySQL, and deploying an app.

Create a new app to list cats

1. Run the rails new command to create a new Rails app. This app stores a list of cats in
Cloud SQL for MySQL.

2. Go to the directory that contains the generated Rails app.

Run the application locally

To run the new Rails application on your local computer:

1. Install dependencies by using Bundler:

2. Start a local web server:

3. In a web browser, go to http://localhost:3000/ (http://localhost:3000/)

A Yay! You're on Rails! message from the app displays on the page.

rails new cat_sample_app  

cd cat_sample_app  

bundle install  

bundle exec bin/rails server  

http://localhost:3000/

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 4/16

Note: To exit the web server, in your terminal window, press Ctrl+C.

Generate sca�olding for a list of cats

Generate scaffolding for a resource named Cat that is used to form a list of cats with their
name and age.

1. Generate the scaffolding.

The command generates a model, controller, and views for the Cat resource.

bundle exec rails generate scaffold Cat name:string age:integer  

invoke active_record
create db/migrate/20170804210744_create_cats.rb
create app/models/cat.rb
invoke rspec
create spec/models/cat_spec.rb

 

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 5/16

appengine/rails-cloudsql-mysql/con�g/routes.rb
 (https://github.com/GoogleCloudPlatform/ruby-docs-
samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-
mysql/con�g/routes.rb)

A1ACD140CA04C63C7B68DA1468ACB4082/APPENGINE/RAILS-CLOUDSQL-MYSQL/CONFIG/ROUTES.RB)

appengine/rails-cloudsql-mysql/con�g/routes.rb
 (https://github.com/GoogleCloudPlatform/ruby-docs-
samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-
mysql/con�g/routes.rb)

2. Open the config/routes.rb �le to see the following generated content.

3. Add root 'cats#index' to the �le.

invoke resource_route
route resources :cats
invoke scaffold_controller
create app/controllers/cats_controller.rb
invoke erb
create app/views/cats
create app/views/cats/index.html.erb
create app/views/cats/edit.html.erb
create app/views/cats/show.html.erb
create app/views/cats/new.html.erb
create app/views/cats/_form.html.erb
invoke jbuilder
create app/views/cats/index.json.jbuilder
create app/views/cats/show.json.jbuilder
create app/views/cats/_cat.json.jbuilder
invoke assets
invoke js
create app/assets/javascripts/cats.js
invoke scss
create app/assets/stylesheets/cats.scss
invoke scss
create app/assets/stylesheets/scaffolds.scss

Rails.application.routes.draw do
 resources :cats
 get 'cats/index'
 # For details on the DSL available within this file, see http://guides.rubyon

end

 

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/config/routes.rb
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/config/routes.rb
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/config/routes.rb

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 6/16

A1ACD140CA04C63C7B68DA1468ACB4082/APPENGINE/RAILS-CLOUDSQL-MYSQL/CONFIG/ROUTES.RB)

appengine/rails-cloudsql-mysql/Gem�le
 (https://github.com/GoogleCloudPlatform/ruby-docs-
samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-
mysql/Gem�le)

B/0A6E898A1ACD140CA04C63C7B68DA1468ACB4082/APPENGINE/RAILS-CLOUDSQL-MYSQL/GEMFILE)

4. Save the �le and close it.

5. Test the Rails app as instructed before (#test-locally).

Using Cloud SQL for MySQL with App Engine

Cloud SQL for MySQL is a fully managed database service to set up, maintain, manage, and
administer your relational MySQL databases in Google Cloud. You can use Cloud SQL in a Rails
app like any other relational database.

Set up Cloud SQL for MySQL

To begin using Cloud SQL with your Rails app in production:

1. Add the mysql2 and appengine gems to the Gemfile �le.

The Rails Gemfile contains the following additional gem entries:

Rails.application.routes.draw do
 resources :cats
 get 'cats/index'

 # For details on the DSL available within this file, see http://guides.rubyon
 root 'cats#index'
end

 

bundle add mysql2
bundle add appengine

 

Added at 2017-08-07 11:54:06 -0700 by USER:
gem "mysql2", "~> 0.4.8"

 

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/config/routes.rb
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/Gemfile
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/Gemfile

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 7/16



appengine/rails-cloudsql-mysql/con�g/boilerplate.database.yml
 (https://github.com/GoogleCloudPlatform/ruby-docs-
samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-
mysql/con�g/boilerplate.database.yml)

3C7B68DA1468ACB4082/APPENGINE/RAILS-CLOUDSQL-MYSQL/CONFIG/BOILERPLATE.DATABASE.YML)

Note: The appengine gem provides a Rake task to run database migrations in production.

2. To con�gure the Rails app to connect to Cloud SQL, open the config/database.yml �le.
The following boilerplate database settings for SQLite are displayed:

3. Con�gure the Cloud SQL instance connection name for the App Engine production
environment.

Added at 2017-08-07 11:54:12 -0700 by USER:
gem "appengine", "~> 0.4.1"

SQLite version 3.x
gem install sqlite3
#
Ensure the SQLite 3 gem is defined in your Gemfile
gem 'sqlite3'
#
default: &default
 adapter: sqlite3
 pool: 5
 timeout: 5000

development:
 <<: *default
 database: db/development.sqlite3

Warning: The database defined as "test" will be erased and
re-generated from your development database when you run "rake".
Do not set this db to the same as development or production.
test:
 <<: *default
 database: db/test.sqlite3

production:
 <<: *default
 database: db/production.sqlite3

 

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/config/boilerplate.database.yml
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/config/boilerplate.database.yml

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 8/16

appengine/rails-cloudsql-mysql/con�g/database.yml
 (https://github.com/GoogleCloudPlatform/ruby-docs-
samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-
mysql/con�g/database.yml)

CD140CA04C63C7B68DA1468ACB4082/APPENGINE/RAILS-CLOUDSQL-MYSQL/CONFIG/DATABASE.YML)

a. Retrieve the instance connection name.

b. Copy the value next to connectionName.

4. Modify the database.yml production database con�guration to the following:

Where:

[YOUR_MYSQL_USERNAME] represents your MySQL username.

[YOUR_MYSQL_PASSWORD] represents your MySQL password.

[YOUR_INSTANCE_CONNECTION_NAME] represents the instance connection name that
you copied in the previous step.

The Rails app is now set up to use Cloud SQL when deploying to the App Engine �exible
environment.

Deploying the app to the App Engine �exible environment

The App Engine �exible environment uses a �le called app.yaml
 (https://cloud.google.com/appengine/docs/�exible/ruby/con�guring-your-app-with-app-yaml) to describe
an app's deployment con�guration. If this �le isn't present, the Cloud SDK tries to guess the
deployment con�guration. However, you should de�ne the �le to provide required con�guration
settings for the Rails secret key and Cloud SQL.

gcloud sql instances describe rails-cloudsql-instance  

production:
 adapter: mysql2
 pool: 5
 timeout: 5000
 username: "[YOUR_MYSQL_USERNAME]"
 password: "[YOUR_MYSQL_PASSWORD]"
 database: "cat_list_production"
 socket: "/cloudsql/[YOUR_INSTANCE_CONNECTION_NAME]"

 

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/config/database.yml
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/config/database.yml
https://cloud.google.com/appengine/docs/flexible/ruby/configuring-your-app-with-app-yaml

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 9/16

appengine/rails-cloudsql-mysql/app.yaml
 (https://github.com/GoogleCloudPlatform/ruby-docs-
samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-
mysql/app.yaml)

/0A6E898A1ACD140CA04C63C7B68DA1468ACB4082/APPENGINE/RAILS-CLOUDSQL-MYSQL/APP.YAML)

appengine/rails-cloudsql-mysql/app.yaml
 (https://github.com/GoogleCloudPlatform/ruby-docs-
samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-
mysql/app.yaml)

/0A6E898A1ACD140CA04C63C7B68DA1468ACB4082/APPENGINE/RAILS-CLOUDSQL-MYSQL/APP.YAML)

To con�gure the sample app for deployment to App Engine, create a new �le named app.yaml
at the root of the Rails application directory and add the following:

Con�gure the Rails secret key in the app.yaml �le

When a Rails app is deployed to the production environment, set the environment variable
SECRET_KEY_BASE with a secret key to protect user session data. This environment variable is
read from the config/secrets.yml �le in your Rails app.

1. Generate a new secret key.

2. Copy the generated secret key.

3. Open the app.yaml �le that you created earlier, and add an env_variables section. The
env_variables de�nes environment variables in the App Engine �exible environment. The
app.yaml �le should look similar to the following example with [SECRET_KEY] replaced
with your secret key.

entrypoint: bundle exec rackup --port $PORT
env: flex
runtime: ruby

 

bundle exec bin/rails secret  

entrypoint: bundle exec rackup --port $PORT
env: flex
runtime: ruby

 

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/app.yaml
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/app.yaml
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/app.yaml
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/app.yaml

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 10/16



appengine/rails-cloudsql-mysql/app.yaml
 (https://github.com/GoogleCloudPlatform/ruby-docs-
samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-
mysql/app.yaml)

/0A6E898A1ACD140CA04C63C7B68DA1468ACB4082/APPENGINE/RAILS-CLOUDSQL-MYSQL/APP.YAML)

Con�gure the Cloud SQL instance in the app.yaml �le

Next, con�gure the App Engine �exible environment to use a speci�ed Cloud SQL instance by
providing the Cloud SQL instance connection name in the app.yaml con�guration �le.

1. Open the app.yaml �le, and add a new section named beta_settings.

2. De�ne a nested parameter cloud_sql_instances with the instance connection name as
the value.

Note: You can retrieve the Cloud SQL instance connection name by running gcloud sql instances

describe rails-cloudsql-instance.

The app.yaml should look similar to the following:

Create an App Engine �exible environment app

If this is the �rst time you are deploying an app, you need to create an App Engine �exible
environment app and select the region where you want to run the Rails app.

1. Create an App Engine app.

env_variables:
 SECRET_KEY_BASE: [SECRET_KEY]

entrypoint: bundle exec rackup --port $PORT
env: flex
runtime: ruby

env_variables:
 SECRET_KEY_BASE: [SECRET_KEY]

beta_settings:
 cloud_sql_instances: [YOUR_INSTANCE_CONNECTION_NAME]

 

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/app.yaml
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/0a6e898a1acd140ca04c63c7b68da1468acb4082/appengine/rails-cloudsql-mysql/app.yaml

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 11/16

2. Select a region that supports App Engine �exible environment for Ruby apps. Read more
about Regions and zones (https://cloud.google.com/docs/geography-and-regions).

Deploy a new version

Next, deploy a new version of the Rails app described in the app.yaml �le without redirecting
tra�c from the current default serving version.

1. Precompile the Rails assets.

2. After the assets �nish compiling, deploy a new version of the app.

It can take several minutes to �nish the deployment. Wait for a success message. You
can view deployed versions in the App Engine version list
 (https://console.cloud.google.com/appengine/versions).

Warning: The older versions of your app remain, as do their associated VM instances. Be aware that all of

these app versions and VM instances are billable resources.

After you deploy the new version, if you attempt to access this new version, it shows the
following error message because you haven't migrated the database.

Grant required permission for the appengine gem

gcloud app create  

bundle exec bin/rails assets:precompile  

gcloud app deploy --no-promote  

https://cloud.google.com/docs/geography-and-regions
https://console.cloud.google.com/appengine/versions

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 12/16

Next, grant access to the cloudbuild service account to run production database migrations
with the appengine gem.

1. List available projects.

2. In the output, �nd the project you want to use to deploy your app, and copy the project
number.

3. Add a new member to your project IAM policy for the role roles/editor to run database
migrations. Replace [YOUR-PROJECT-ID] with your Google Cloud project ID and
replace[PROJECT_NUMBER] with the project number you copied in the previous step.

Migrate your Rails database

Rails database migrations are used to update the schema of your database without using SQL
syntax directly. Next you migrate your cat_list_production database.

The appengine gem provides the Rake task appengine:exec to run a command against the
most recent deployed version of your app in the production App Engine �exible environment.

1. Migrate the Cloud SQL for MySQL cat_list_production database in production.

You should see output similar to:

gcloud projects list  

gcloud projects add-iam-policy-binding [YOUR-PROJECT-ID] \
 --member=serviceAccount:[PROJECT_NUMBER]@cloudbuild.gserviceaccount.com \
 --role=roles/editor

 

bundle exec rake appengine:exec -- bundle exec rake db:migrate  

---------- EXECUTE COMMAND ----------
bundle exec rake db:migrate
Debuggee gcp:787021104993:8dae9032f8b02004 successfully registered
== 20170804210744 CreateCats: migrating =======================================
-- create_table(:cats)
 -> 0.0219s
== 20170804210744 CreateCats: migrated (0.0220s) ==============================

---------- CLEANUP ----------

 

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 13/16





Note: If a permission error occurs when attempting to run database migrations, verify that

[PROJECT_NUMBER]@cloudbuild.gserviceaccount.com has the roles/editor role.

2. To verify the database migration, go to:

Note: To get a list of versions, use gcloud app versions list. The last default service version item

is the latest deployment.

The following is displayed for a successful deployment:

Migrate tra�c to new version

Finally, direct tra�c to your newly deployed version by using the following command:

The new version of the app is now accessible from:

Reading App Engine logs

[YOUR-VERSION]-dot-[YOUR-PROJECT-ID].appspot.com  

gcloud app services set-traffic default --splits [YOUR-VERSION]=1  

https://[YOUR-PROJECT-ID].appspot.com  

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 14/16



Now that you have deployed your Rails app, you might want to read the logs. You can read the
app logs by using the Logs Viewer (https://console.cloud.google.com/logs/viewer) located in the
Google Cloud Console.

You can learn more about reading logs using the Cloud SDK
 (https://cloud.google.com/sdk/gcloud/reference/app/logs/read).

Clean up resources

After you've �nished the Using Cloud SQL for MySQL with Rails 5 tutorial, you can clean up the
resources that you created on GCP so they won't take up quota and you won't be billed for them
in the future. The following sections describe how to delete or turn off these resources.

Delete project

The easiest way to eliminate billing is to delete the project that you created for the tutorial.

To delete the project:

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

https://console.cloud.google.com/logs/viewer
https://cloud.google.com/sdk/gcloud/reference/app/logs/read
https://console.cloud.google.com/iam-admin/projects

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 15/16



Delete an App Engine version

To delete an app version:

1. In the Cloud Console, go to the Versions page for App Engine.

GO TO THE VERSIONS PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APPENGINE/VERSIONS)

2. Select the checkbox for the non-default app version you want to delete.

Note: The only way you can delete the default version of your App Engine app is by deleting your

project. However, you can stop the default version in the Cloud Console

 (https://console.cloud.google.com/appengine/versions). This action shuts down all instances

associated with the version. You can restart these instances later if needed.

In the App Engine standard environment, you can stop the default version only if your app has manual

or basic scaling.

3. Click Delete to delete the app version.

Delete a Cloud SQL instance

To delete a Cloud SQL instance:

1. In the Cloud Console, go to the SQL Instances page.

GO TO THE SQL INSTANCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/SQL/INSTANCES)

2. Click the name of the SQL instance you want to delete.

3. Click Delete  to delete the instance.

What's next

Learn how to run the Ruby Bookshelf sample app in the App Engine �exible environment
 (https://cloud.google.com/ruby/getting-started/tutorial-app).

Learn how to run the Ruby Bookshelf sample app on Compute Engine
 (https://cloud.google.com/ruby/tutorials/bookshelf-on-compute-engine).

https://console.cloud.google.com/appengine/versions
https://console.cloud.google.com/appengine/versions
https://console.cloud.google.com/sql/instances
https://cloud.google.com/ruby/getting-started/tutorial-app
https://cloud.google.com/ruby/tutorials/bookshelf-on-compute-engine

1/23/2020 Using Cloud SQL for MySQL with Rails 5 | Ruby | Google Cloud

https://cloud.google.com/ruby/rails/using-cloudsql-mysql 16/16

Learn how to run the Ruby Bookshelf sample app on Google Kubernetes Engine
 (https://cloud.google.com/ruby/tutorials/bookshelf-on-kubernetes-engine).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

https://cloud.google.com/ruby/tutorials/bookshelf-on-kubernetes-engine
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

