
1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 1/11



Google Kubernetes Engine (GKE)

Documentation Guides

This page shows you how to do the following:

1. Create a Hello World app.

2. Package the app into a container image using Cloud Build.

3. Create a cluster in Google Kubernetes Engine (GKE).

4. Deploy the container image to your cluster.

The sample is shown in several languages, but note that you can use other languages in
addition to the ones shown.

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Enable the Cloud Build and Google Kubernetes Engine APIs.

ENABLE THE APIS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=CLOUDBUI

5. Install and initialize the Cloud SDK (https://cloud.google.com/sdk/docs/).

 (https://cloud.google.com/kubernetes-engine/)

 (https://cloud.google.com/kubernetes-engine/docs/)

Quicksta�: Deploying a language-speci�c app

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/kubernetes-engine/docs/
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=cloudbuild.googleapis.com,container.googleapis.com&redirect=https://console.cloud.google.com
https://cloud.google.com/sdk/docs/

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 2/11

quickstart/go/helloworld.go
 (https://github.com/GoogleCloudPlatform/kubernetes-engine-
samples/blob/master/quickstart/go/helloworld.go)

LOUDPLATFORM/KUBERNETES-ENGINE-SAMPLES/BLOB/MASTER/QUICKSTART/GO/HELLOWORLD.GO)

6. kubectl is used to manage Kubernetes, the cluster orchestration system used by GKE.
You can install kubectl by using gcloud:

Writing the sample app

For instructions on creating a Hello World app that runs on GKE, click your language:

1. Create a new directory named helloworld-gke and change directory into it:

2. Create a new module named example.com/helloworld:

3. Create a new �le named helloworld.go and paste the following code into it:

gcloud components install kubectl 

GO NODE.JS PYTHON MORE

mkdir helloworld-gke
cd helloworld-gke



go mod init example.com/helloworld 

package main

import (
 "fmt"
 "log"
 "net/http"
 "os"
)

func main() {
 http.HandleFunc("/", handler)
 port := os.Getenv("PORT")
 if port == "" {



https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/master/quickstart/go/helloworld.go
https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/master/quickstart/go/helloworld.go

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 3/11

quickstart/go/Docker�le
 (https://github.com/GoogleCloudPlatform/kubernetes-engine-
samples/blob/master/quickstart/go/Docker�le)

GLECLOUDPLATFORM/KUBERNETES-ENGINE-SAMPLES/BLOB/MASTER/QUICKSTART/GO/DOCKERFILE)

This code creates a web server that listens on the port de�ned by the PORT environment variable.

Your app is �nished and ready to be packaged in a Docker container, and then uploaded to Container
Registry.

Containerizing an app with Cloud Build

1. To containerize the sample app, create a new �le named Dockerfile in the same directory
as the source �les, and copy the following content:

 port = "8080"
 }
 log.Printf("Listening on localhost:%s", port)
 log.Fatal(http.ListenAndServe(fmt.Sprintf(":%s", port), nil))
}

func handler(w http.ResponseWriter, r *http.Request) {
 log.Print("Hello world received a request.")
 target := os.Getenv("TARGET")
 if target == "" {
 target = "World"
 }
 fmt.Fprintf(w, "Hello %s!\n", target)
}

GO NODE.JS PYTHON MORE

Use the offical Golang image to create a build artifact.
This is based on Debian and sets the GOPATH to /go.
https://hub.docker.com/_/golang
FROM golang:1.12 as builder

Copy local code to the container image.
WORKDIR /app
COPY . .



https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/master/quickstart/go/Dockerfile
https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/master/quickstart/go/Dockerfile

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 4/11

2. Get your Google Cloud project ID:

Build your container image using Cloud Build (https://cloud.google.com/cloud-build), which is
similar to running docker build and docker push, but it happens on Google Cloud.
Replace PROJECT_ID with your Google Cloud ID:

The image is stored in Container Registry (https://cloud.google.com/container-registry).

Creating a Kubernetes Engine cluster

A GKE cluster is a managed set of Compute Engine virtual machines that operate as a single
GKE cluster. This tutorial uses a single node.

1. Create the cluster. Replace YOUR_GCP_ZONE with the Google Cloud zone where you want
to host your cluster. For a complete list, see Geography and regions
 (https://cloud.google.com/docs/geography-and-regions).

Build the command inside the container.
RUN CGO_ENABLED=0 GOOS=linux go build -v -o helloworld

Use a Docker multi-stage build to create a lean production image.
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-
FROM alpine
RUN apk add --no-cache ca-certificates

Copy the binary to the production image from the builder stage.
COPY --from=builder /app/helloworld /helloworld

Run the web service on container startup.
CMD ["/helloworld"]

gcloud config get-value project 

gcloud builds submit --tag gcr.io/PROJECT_ID/helloworld-gke . 

gcloud container clusters create helloworld-gke \
 --num-nodes 1 \
 --enable-basic-auth \
 --issue-client-certificate \
 --zone YOUR_GCP_ZONE



https://cloud.google.com/cloud-build
https://cloud.google.com/container-registry
https://cloud.google.com/docs/geography-and-regions

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 5/11





quickstart/deployment.yaml
 (https://github.com/GoogleCloudPlatform/kubernetes-engine-
samples/blob/master/quickstart/deployment.yaml)

Note: A region contains one or more zones. Using a region instead of a zone for the --zone option (for

example, us-central1 instead of us-central1-b) creates a node in each zone within the region.

Note: The default scope is set to --scopes=gke-default. For a full list of available scopes, see

OAuth 2.0 scopes for Google APIs (https://developers.google.com/identity/protocols/googlescopes).

2. Verify that you have access to the cluster. The following command lists the nodes in your
container cluster which are up and running and indicates that you have access to it.

If you run into errors, refer to the Kubernetes Troubleshooting guide
 (https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/)

Deploying to GKE

To deploy your app to the GKE cluster you created, you need two Kubernetes objects.

1. A Deployment (http://kubernetes.io/docs/user-guide/deployments/) to de�ne your app.

2. A Service (https://kubernetes.io/docs/concepts/services-networking/service/) to de�ne how to
access your app.

Deploy an app

The app has a frontend server that handles the web requests. You de�ne the cluster resources
needed to run the frontend in a new �le called deployment.yaml. These resources are described
as a Deployment. You use Deployments to create and update a ReplicaSet
 (https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/) and its associated pods.

1. Create the deployment.yaml �le in the same directory as your other �les and copy the
following content, replacing $GCLOUD_PROJECT with your Google Cloud project ID:

kubectl get nodes 

https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/master/quickstart/deployment.yaml
https://developers.google.com/identity/protocols/googlescopes
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
http://kubernetes.io/docs/user-guide/deployments/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 6/11

LECLOUDPLATFORM/KUBERNETES-ENGINE-SAMPLES/BLOB/MASTER/QUICKSTART/DEPLOYMENT.YAML)

2. Deploy the resource to the cluster:

3. Track the status of the Deployment:

After the Deployment has the same number of AVAILABLE pods as DESIRED pods, the
Deployment is complete.

This file configures the hello-world app which serves public web traffic.
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: helloworld-gke
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello
 template:
 metadata:
 labels:
 app: hello
 spec:
 containers:
 - name: hello-app
 # Replace $GCLOUD_PROJECT with your project ID
 image: gcr.io/$GCLOUD_PROJECT/helloworld-gke:latest
 # This app listens on port 8080 for web traffic by default.
 ports:
 - containerPort: 8080
 env:
 - name: PORT
 value: "8080"



kubectl apply -f deployment.yaml 

kubectl get deployments 

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-deployment 1 1 1 1 20s



https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/master/quickstart/deployment.yaml

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 7/11

quickstart/service.yaml
 (https://github.com/GoogleCloudPlatform/kubernetes-engine-
samples/blob/master/quickstart/service.yaml)

OOGLECLOUDPLATFORM/KUBERNETES-ENGINE-SAMPLES/BLOB/MASTER/QUICKSTART/SERVICE.YAML)

If the Deployment has a mistake, run kubectl apply -f deployment.yaml again to
update the Deployment with any changes.

4. After the Deployment is complete, you can see the pods that the Deployment created:

Deploy a Service

Services (https://kubernetes.io/docs/concepts/services-networking/service/) provide a single point of
access to a set of pods. While it's possible to access a single pod, pods are ephemeral and can
only be accessed reliably by using a Service address. In your Hello World app, the "hello" Service
de�nes a load balancer
 (https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/) to access

the hello-app pods from a single IP address. This Service is de�ned in the service.yaml �le.

1. Create the �le service.yaml in the same directory as your other source �les with the
following content:

The pods are de�ned separately from the Service that uses the pods. Kubernetes uses
labels (https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/) to select the

kubectl get pods 

The hello service provides a load-balancing proxy over the hello-app
pods. By specifying the type as a 'LoadBalancer', Kubernetes Engine will
create an external HTTP load balancer.
apiVersion: v1
kind: Service
metadata:
 name: hello
spec:
 type: LoadBalancer
 selector:
 app: hello
 ports:
 - port: 80
 targetPort: 8080



https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/master/quickstart/service.yaml
https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/master/quickstart/service.yaml
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 8/11

pods that a Service addresses. With labels, you can have a Service that addresses pods
from different replica sets and have multiple Services that point to an individual pod.

2. Create the Hello World Service:

3. Get the Service's external IP address:

It can take up to 60 seconds to allocate the IP address. The external IP address is listed
under the column EXTERNAL-IP for the hello Service.

View a deployed app

You have now deployed all the resources needed to run the Hello World app on GKE. Use the
external IP address from the previous step to load the app in your web browser, and see your
running app!

Clean up

To avoid incurring charges to your Google Cloud account for the resources used in this
quickstart, follow these steps.

You are charged for the Compute Engine instances
 (https://cloud.google.com/kubernetes-engine/pricing) running in your cluster, as well as for the

kubectl apply -f service.yaml 

kubectl get services 

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello LoadBalancer 10.22.222.222 35.111.111.11 80:32341/TCP 1m
kubernetes ClusterIP 10.22.222.1 <none> 443/TCP 20m



Example cURL call to your running application on GKE
$ kubectl get service hello \
 -o=custom-columns=NAME:.status.loadBalancer.ingress[*].ip --no-headers
35.111.111.11
$ curl 35.111.111.11
Hello World!



https://cloud.google.com/kubernetes-engine/pricing
https://cloud.google.com/container-registry/pricing

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 9/11



container image in Container Registry (https://cloud.google.com/container-registry/pricing).

Delete the project

Deleting your Google Cloud project stops billing for all the resources used within that project.

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

Delete your cluster and container

If you want to keep your project but only delete the resources used in this tutorial, delete your
cluster and image.

To delete a cluster using the gcloud command-line tool, run the following command:

Note: For more information, refer to the documentation on Deleting a cluster

 (https://cloud.google.com/kubernetes-engine/docs/how-to/deleting-a-cluster).

To delete an image from one of your Container Registry repositories, run the following
command:

gcloud container clusters delete helloworld-gke 

gcloud container images delete gcr.io/[PROJECT-ID]/helloworld-gke 

https://cloud.google.com/container-registry/pricing
https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/kubernetes-engine/docs/how-to/deleting-a-cluster

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 10/11

Note: For more information, refer to the documentation on Managing images

 (https://cloud.google.com/container-registry/docs/managing#deleting_images).

What's next

For more information on Kubernetes, see the following:

Learn more about creating clusters
 (https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-container-cluster).

Learn more about Kubernetes (http://kubernetes.io/).

Read the kubectl reference documentation
 (http://kubernetes.io/docs/user-guide/kubectl-overview/).

For more information on deploying to GKE, see the following:

Learn how to package, host, and deploy a simple web server application
 (https://cloud.google.com/kubernetes-engine/docs/tutorials/hello-app).

Deploy a Guestbook application with Redis and PHP
 (https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook).

Deploy a stateful WordPress application with persistent storage and MySQL
 (https://cloud.google.com/kubernetes-engine/docs/tutorials/persistent-disk).

Setting up Cloud Run on GKE (https://cloud.google.com/run/docs/gke/setup).

For more information on deploying to GKE directly from your IDE with Cloud Code, see the
following:

Cloud Code for VS Code (https://cloud.google.com/code/docs/vscode/deploying-an-application)

Cloud Code for IntelliJ (https://cloud.google.com/code/docs/intellij/deploying-a-k8-app)

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

https://cloud.google.com/container-registry/docs/managing#deleting_images
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-container-cluster
http://kubernetes.io/
http://kubernetes.io/docs/user-guide/kubectl-overview/
https://cloud.google.com/kubernetes-engine/docs/tutorials/hello-app
https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
https://cloud.google.com/kubernetes-engine/docs/tutorials/persistent-disk
https://cloud.google.com/run/docs/gke/setup
https://cloud.google.com/code/docs/vscode/deploying-an-application
https://cloud.google.com/code/docs/intellij/deploying-a-k8-app
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

1/9/2020 Quickstart: Deploying a language-specific app | Kubernetes Engine Documentation | Google Cloud

https://cloud.google.com/kubernetes-engine/docs/quickstarts/deploying-a-language-specific-app 11/11

Last updated December 18, 2019.

